CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Impurity effect on surface states of Bi (111) ultrathin films |
Kai Zhu(朱凯)1,2, Dai Tian(田岱)1,2, Lin Wu(伍琳)1,2, Jianli Xu(许建丽)1,2, Xiaofeng Jin(金晓峰)1,2 |
1 State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433, China |
|
|
Abstract The surface impurity effect on the surface-state conductivity and weak antilocalization (WAL) effect has been investigated in epitaxial Bi (111) films by magnetotransport measurements at low temperatures. The surface-state conductivity is significantly reduced by the surface impurities of Cu, Fe, and Co. The magnetotransport data demonstrate that the observed WAL is robust against deposition of nonmagnetic impurities, but it is quenched by the deposition of magnetic impurities which break the time reversal symmetry. Our results help to shed light on the effect of surface impurities on the electron and spin transport properties of a 2D surface electron systems.
|
Received: 26 May 2016
Revised: 31 May 2016
Accepted manuscript online:
|
PACS:
|
73.25.+i
|
(Surface conductivity and carrier phenomena)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Basic Research Program of China (Grants Nos. 2015CB921400 and 2011CB921802) and the National Natural Science Foundation of China (Grants Nos. 11374057, 11434003, and 11421404). |
Corresponding Authors:
Xiaofeng Jin
E-mail: xfjin@fudan.edu.cn
|
Cite this article:
Kai Zhu(朱凯), Dai Tian(田岱), Lin Wu(伍琳), Jianli Xu(许建丽), Xiaofeng Jin(金晓峰) Impurity effect on surface states of Bi (111) ultrathin films 2016 Chin. Phys. B 25 087303
|
[1] |
Hofmann P 2006 Prog. Surf. Sci. 81 191
|
[2] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[3] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[4] |
Bychkov Yu A and Rashba E I 1984 JETP Lett. 39 78
|
[5] |
Edelstein V M 1990 Solid State Commun. 73 233
|
[6] |
Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 499
|
[7] |
Liu Luqiao, Richardella A, Garate Ion, Zhu Yu, Samarth N. and Chen Ching-Tzu 2015 Phys. Rev. B 91 235437
|
[8] |
Rojas Sanchez J C, Vila L, Desfonds G, Gambarelli S, Attane J P, De Teresa J M, Magen C and Fert A 2013 Nat. Commun. 4 12
|
[9] |
Ast C R and Hochst H 2011 Phys. Rev. Lett. 87 177602
|
[10] |
Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M, Echenique P M, Saito M and Hasegawa S 2006 Phys. Rev. Lett. 97 146803
|
[11] |
Takayama A, Sato T, Souma S, Oguchi T and Takahashi T 2012 Nano Lett. 12 1776
|
[12] |
Lutskii V N 1965 JETP Lett. 2 245
|
[13] |
Sandomirskii V B 1967 Sov. Phys. JETP 25 202
|
[14] |
Xiao S, Wei D and Jin X 2012 Phys. Rev. Lett. 109 166805
|
[15] |
Klein C, Vollmers N J, Gerstmann U, Zahl P, Lukermann D, Jnawali G, Pfnur H, Tegenkamp C, Sutter P, Schmidt G W and Hoegen M Horn-von 2015 Phys. Rev. B 91 195441
|
[16] |
Luekermann D, Sologub S, Pfnuer H, Klein C, Hoegen M Horn-von and Tegenkamp C 2012 Phys. Rev. B 86 195432
|
[17] |
Kroger P, Sologub S, Tegenkamp C and Pfnur H 2014 J. Phys.:Condens. Matter 26 225002
|
[18] |
Jnawali G, Klein C, Wagner Th, Hattab H, Zahl P, Acharya D P, Sutter P, Lorke A and Hoegen M Horn-von 2012 Phys. Rev. Lett. 108 266804
|
[19] |
Fu L and Kane C L 2007 Phys. Rev. B 76 045302
|
[20] |
Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S and Sakurai T 2004 Phys. Rev. Lett. 93 105501
|
[21] |
Xu J, Wu L, Li Y, Tian D, Zhu K, Gong X and Jin X 2015 Sci. Bull. 60 1261
|
[22] |
He H T, Wang G, Zhang T, Sou I K, Wong George K L and Wang J N 2011 Phys. Rev. Lett. 106 166805
|
[23] |
Cottin M C, Bobisch C A, Schaert J, Jnawali G and Sonntag A 2011 Appl. Phys. Lett. 98 022108
|
[24] |
Komnik Y F, Bukhshtab E I, Andrievskii V V and Butenko A V 1983 Low. Temp. Phys. 7 52 315
|
[25] |
Yin S L, Liang X J and Zhao H W 2013 Chin. Phys. Lett. 30 087305
|
[26] |
Bergmann G 1984 Phys. Rep. 107 158
|
[27] |
Sangiao S, Marcano N, Fan J, Morellon L, Ibarra M R and Teresa J 2011 Europhys. Lett. 95 37002
|
[28] |
Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|