Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 066302    DOI: 10.1088/1674-1056/adc6f3
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping

Jamal Q. M. Almarashi1, Mohamed K. Zayed1,2,†, Hesham Fares1,3,‡, Heba Sukar3, Takao Ono4, Yasushi Kanai4, and Mohamed Almokhtar3,4,§
1 Physics Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
2 Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 6111, Egypt;
3 Physics Department, Assiut University, Assiut 71516, Egypt;
4 The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan
Abstract  Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In this context, laser-induced tuning of charge carriers in graphene facilitates the exploration of graphene's properties in relation to its surroundings and enables laser-assisted functionalization. This has the potential to advance optoelectronic devices that utilize graphene on transparent dielectric substrates, such as Al$_{2}$O$_{3}$. In this work, laser power ($P_{\rm L}$) in Raman spectroscopy is used as a convenient contactless tool to manipulate and control unintentional carrier concentration and Fermi level position ($E_{\rm F}$) in graphene/$\alpha $-Al$_{2}$O$_{3}$ (G/Al$_{2}$O$_{3}$) under ambient conditions. Samples are annealed at 400 $^\circ$C for two hours in an ($\rm Ar+H_{2}$) atmosphere to remove any chemical residues. Analysis of the peak frequency ($\omega $) and full width at half maximum ($\varGamma $) of the G and 2D bands show that G/Al$_{2}$O$_{3}$ layers initially exhibit p-type doping, with $E_{\rm F}$ located at $\sim 100$ meV below its Dirac charge-neutral point (DCNP). Increasing $P_{\rm L}$ results in effective carrier manipulation and raises $E_{\rm F}$ above DCNP. No significant internal stress is produced due to $P_{\rm L}$, as inferred from the strain-sensitive G* band of graphene. Raman analysis of three successive cycles reveals hysteretic behavior from cycle to cycle, which is commonly reported to be limited by the type and density of the existing unintentional doping. Because of the ubiquitous nature of unintentional doping in graphene, manipulating it using contactless laser power to realize the desired graphene properties would be one of the best available practical approaches.
Keywords:  graphene      Raman spectroscopy      laser power      unintentional graphene doping      ambient conditions      optoelectronics  
Received:  23 December 2024      Revised:  29 March 2025      Accepted manuscript online:  31 March 2025
PACS:  63.22.Rc (Phonons in graphene)  
  68.65.Pq (Graphene films)  
  72.80.Vp (Electronic transport in graphene)  
  78.67.Wj (Optical properties of graphene)  
Fund: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 445-9-687.
Corresponding Authors:  Mohamed K. Zayed, Hesham Fares, Mohamed Almokhtar     E-mail:  mkzayed@outlook.com;hfhassan@taibahu.edu.sa;almoktar@aun.edu.eg

Cite this article: 

Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping 2025 Chin. Phys. B 34 066302

[1] Son I H, Park J H, Park S, Park K, Han S, Shin J, Doo S G, Hwang Y, Chang H and Choi J W 2017 Nat. Commun 8 1561
[2] Chodankar N R, Nanjundan A K, Losic D, Dubal D P and Baek J B 2020 Mater. Today Adv. 6 100053
[3] Zhan B, Li C, Yang J, Jenkins G, HuangWand Dong X 2014 Small 10 4042
[4] Zhang X, Jing Q, Ao S, Schneider G F, Kireev D, Zhang Z and Fu W 2019 Small 16 1902820
[5] Fares H, Almokhtar M, Almarashi J Q M, Rashad M and Moustafa S 2022 Physica E 142 115300
[6] Moustafa S, Almarashi J Q M, Almokhtar M, Fares H and Zayed M K 2023 Appl. Phys. A 129 376
[7] Fares H, Ahmed M and Moustafa S 2023 Phys. Scr. 98 035509
[8] Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2009 Phys. Rev. Lett. 103 226803
[9] Bostwick A, McChesney J, Ohta T, Rotenberg E, Seyller T and Horn K 2009 Prog. Surf. Sci. 84 380
[10] Lee H, Paeng K and Kim I S 2018 Synthetic Metals 244 36
[11] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803
[12] Caridad J M, Rossella F, Bellani V, Maicas M, PatriniMand Díez 2010 J. App. Phys. 108 084321
[13] Sojoudi H, Baltazar J, Henderson C and Graham S 2012 J. Vac. Sci. Technol. B 30 041213
[14] Chua C K, Ambrosi A, Sofer Z, Macková A, Havránek V, Tomandl I and Pumera M 2014 Chem. Eur. J. 20 15760
[15] Nistor R A, KurodaMA, Maarouf A A and Martyna G 2012 Phys. Rev. B 86 041409
[16] Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W and Brus L E 2010 Nano Lett. 10 4944
[17] Hu Z, Zhao Y, Zou W, Lu Q, Liao J, Li F, Shang M, Lin L and Liu Z 2022 Adv. Funct. Mater. 32 2203179
[18] Jankovský O, Libánská A, Bouša D, Sedmidubský D, Matějková S and Sofer Z 2016 Chem. Eur. J. 22 8627
[19] Mazánek V, Luxa J, Matějková S, Kučera J, Sedmidubský D, Pumera M and Sofer Z 2019 ACS Nano 13 1574
[20] Lin L, Zhang J, Su H, Li J, Sun L, Wang Z, Xu F, Liu C, Lopatin S, Zhu Y, Jia K, Chen S, Rui D, Sun J, Xue R, Gao P, Kang N, Han Y, Xu H Q, Cao Y, Novoselov K S, Tian Z, Ren B, Peng H and Liu Z 2019 Nat. Commun. 10 1912
[21] Yan Y, Nashath F Z, Chen S, Manickam S, Lim S S, Zhao H, Lester E, Wu T and Pang C H 2020 Nanotechnology Reviews 9 1284
[22] Lupina G, Kitzmann J, Costina I, Lukosius M, Wenger C, Wolff A, Vaziri S, Östling M, Pasternak I, Krajewska A, Strupinski W, Kataria S, Gahoi A, Lemme M C, Ruhl G, Zoth G, Luxenhofer O and Mehr W 2015 ACS Nano 9 4776
[23] Chua C K, Ambrosi A, Sofer Z, Macková A, Havránek V, Tomandl I and Pumera M 2014 Chem. Eur. J. 20 15760
[24] Masuda K and, Sano M 2015 Langmuir 31 4934
[25] Nistor R A, Kuroda M A, Maarouf A A, Martyna G J 2012 Phys Rev. B 86 041409
[26] Ishigami M, Chen J H, Cullen W G, Fuhrer M S and Williams E D 2007 Nano Lett. 7 1643
[27] Kang Y J, Kang J and Chang K J 2008 Phys. Rev. B 78 115404
[28] Shemella P and Nayak S K 2009 Appl. Phys. Lett. 94 032101
[29] Nguyen T C, Otani M and Okada S. 2011 Phys. Rev. Lett. 106 106801
[30] Hong N, Kireev D, Zhao Q, Chen D, Akinwande D and Li W 2021 Adv. Mater. 34 2106615
[31] Fechine G J M, Martin-Fernandez I, Yiapanis G, Bentini R, Kulkarni E S, Bof de Oliveira R V, Hu X, Yarovsky I, Castro Neto A H and Özyilmaz B 2015 Carbon 83 224
[32] Caldwell J D, Anderson T J, Culbertson J C, Jernigan G G, Hobart K D, Kub F J, Tadjer M J, Tedesco J L, Hite J K, Mastro M A, Myers-Ward R L, Eddy C R Jr, Campbell P M and Gaskill D K 2010 ACS Nano 4 1108
[33] Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G,Wirsig A, Hucho C,Watanabe K, Taniguchi T, Geim A K and Gorbachev R V 2014 Nano Lett. 14 3270
[34] Shautsova V, Gilbertson A M, Black N C G, Maier S A and Cohen L F 2016 Sci. Rep. 6 30210
[35] Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P and Schönenberger C 2019 Nano Lett. 19 4097
[36] Knoch J and Muller M R 2014 IEEE Transactions on Nanotechnology 13 1044
[37] Oh J S, Kim K N and Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120
[38] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2011 Nano Lett. 12 414
[39] Cheng Z, Zhou Q,Wang C, Li Q,Wang C and Fang Y 2011 Nano Lett. 11 767
[40] Nourbakhsh A, Cantoro M, Klekachev A, Clemente F, Sorée B, van der Veen M H, Vosch T, Stesmans A, Sels B and De Gendt S 2010 J. Phys. Chem. C 114 6894
[41] Kim Y, Cho D H, Ryu S and Lee C 2014 Carbon 67 673
[42] Ni Z H, Wang H M, Luo Z Q, Wang Y Y, Yu T, Wu Y and HandShen Z X 2010 J. Raman Spectrosc. 41 479
[43] Armano A, Buscarino G, Cannas M, Gelardi F M, Giannazzo F, Schilirò E and Agnello S 2018 Carbon 127 270
[44] Hulman M, Haluška M, Scalia G, Obergfell D and Roth S 2008 Nano Lett. 8 3594
[45] Tiberj A, Rubio-Roy M, Paillet M, Huntzinger J R, Landois P, Mikolasek M, Contreras S, Sauvajol J L, Dujardin E and Zahab A A 2013 Sci. Rep. 3 2355
[46] Kim M, Safron N S, Huang C, Arnold M S and Gopalan P 2011 Nano Lett. 12 182
[47] Lee H, Paeng K and Kim I S 2018 Synthetic Metals 244 36
[48] Luo Z, Pinto N J, Davila Y and Charlie Johnson A T 2012 Appl. Phys. Lett. 100 253108
[49] Iqbal M Z, Khan M F, Iqbal M W and Eom J 2014 J. Mater. Chem. C 2 5404
[50] Iqbal M Z, Iqbal M W, Khan M F and Eom J 2015 Phys. Chem. Chem. Phys. 17 20551
[51] Zayed M K, Fares H and Almokhtar M 2023 Appl. Surf. Sci. 641 158487
[52] Rho Y, Lee K, Wang L, Ko C, Chen Y, Ci P, Pei J, Zettl A, Wu J and Grigoropoulos 2022 Nat. Electron. 5 505
[53] Yang H, Qin S, Zheng X, Wang G, Tan Y, Peng G and Zhang X 2017 Nanomaterials 7 286
[54] Lee S, Lee Y, Kim S M and Song E B 2018 Carbon 127 70
[55] Ahn J, Chou H and Banerjee S K 2017 J. Appl. Phys. 121 163105
[56] Fallahazad B, Lee K, Lian G, Kim S, Corbet C M, Ferrer D A, Colombo L and Tutuc E 2012 Appl. Phys. Lett. 100 093112
[57] Tang B, Guoxin H and Gao H 2010 Appl. Spectrosc. Rev. 45 369
[58] Berciaud S, Ryu S, Brus L E and Heinz T F 2009 Nano Lett. 9 346
[59] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[60] Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108
[61] Froehlicher G and Berciaud S 2015 Phys Rev B 91 205413
[62] Zafar Z, Ni Z H, Wu X, Shi Z X, Nan H Y, Bai J and Sun L T 2013 Carbon 61 57
[63] Zólyomi V, Koltai J and Kürti J 2011 Phys. Status Solidi B 248 2435
[64] Hao Y,Wang Y,Wang L, Ni Z,Wang Z,Wang R, Koo C K, Shen Z and Thong J T L 2010 Small 6 195
[65] Tiberj A, Rubio-Roy M, Paillet M, Huntzinger J R, Landois P, Mikolasek M, Contreras S, Sauvajol J L, Dujardin E and Zahab A A 2013 Sci. Rep. 3 2355
[66] Ji E, Kim M J, Lee J Y, Sung D, Kim N, Park J W, Hong S and Lee G H 2021 Carbon 184 651
[67] Almokhtar M, Fares H, Inoue K and Matsumoto K 2021 Appl. Surf. Sci. 541 148390
[68] Almokhtar M, Almarashi J Q M, Matsumoto K and Fares H 2022 Opt. Mater. 132 112770
[69] Wang Y, Zhou X, Jin Y, Zhang X, Zhang Z, Wang Y, Liu J, Wang M, Xia Y, Zhao P, Zhang Z and Wang H 2019 Phys. Rev. B 100 241407
[70] Kalosakas G, Lathiotakis N N and Papagelis K 2021 Materials 15 67
[71] Liu Y, Shi Y, Zhou W, Shi W, Dang W, Li X and Liang B 2021 Optics and Laser Technology 139 106960
[72] Calizo I, Bao W, Miao F, Lau C N and Balandin A A 2007 Appl. Phys. Lett. 91 201904
[73] Bruna M and Borini S 2010 Phys. Rev. B 81 125421
[74] Dong X, Shi Y, Zhao Y, Chen D, Ye J, Yao Y, Gao F, Ni Z, Yu T, Shen Z, Huang Y, Chen P and Li L J 2009 Phys. Rev. Lett. 102 135501
[75] Lin S S, Chen B G, Pan C T, Hu S, Tian P and Tong L M 2011 Appl. Phys. Lett. 99 233110
[76] Casiraghi C 2009 Phys. Rev. B 80 233407
[77] Lazzeri M and Mauri F 2006 Phys. Rev. Lett. 97 266407
[78] S Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Nat. Mat. 6 198
[79] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 654
[80] Yan J, Zhang Y, Kim P and Pinczuk A 2007 Phys. Rev. Lett 98 166802
[81] Pickett W E and Allen P B 1977 Phys. Rev. B 16 3127
[82] Cho C, Gon Lee Y, Jung U, Goo Kang C, Lim S, Jun Hwang H, Choi H and Hun Lee B 2013 Appl. Phys. Lett. 103 083110
[83] Xu H, Chen Y, Zhang J and Zhang H 2012 Small 8 2833
[84] Kalita H, V H, Shinde D B, Pillai V K and Aslam M 2013 Appl. Phys. Lett. 102 143104
[85] Iqbal M Z, Siddique S and Zain-ul-Abideen 2017 Carbon 123 168
[1] Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战). Chin. Phys. B, 2025, 34(7): 077103.
[2] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
[3] Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中). Chin. Phys. B, 2025, 34(6): 066205.
[4] Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy
Yuru Lin(林玉茹), Yu Li(李宇), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), Ruiang Guo(郭睿昂), Yangbin Wang(王扬斌), Qiwei Hu(胡启威), and Li Lei(雷力). Chin. Phys. B, 2025, 34(5): 057802.
[5] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[6] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[7] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[8] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[9] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[10] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(2): 027503.
[11] Giant enhancement of negative friction by resonant coupling between localized surface phonon polaritons and graphene plasmonics
Kaipeng Liu(柳开鹏), Shuai Zhou(周帅), Shiwei Dai(戴士为), and Lixin Ge(葛力新). Chin. Phys. B, 2025, 34(1): 014202.
[12] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[13] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[14] Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field
A. Kalani, Alireza Amani, and M. A. Ramzanpour. Chin. Phys. B, 2024, 33(8): 080303.
[15] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
No Suggested Reading articles found!