| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling |
| Zhuoqun Wen(文卓群)1,2,3, Haiyu Zhu(诸海渝)2,4, Wen-Hao Liu(刘文浩)5, Zhi Wang(王峙)5,†, Wen Xiong(熊稳)1,2,‡, and Xingzhan Wei(魏兴战)1,2,3,§ |
1 Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; 2 Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 5 State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
|
|
Abstract Understanding the dynamics of photoexcited carriers is essential for advancing photoelectronic device design. Photon absorption generates electron-hole pairs, and subsequent scatterings can induce ultrafast thermalization within a picosecond, forming a quasi-equilibrium distribution with overheated electrons. The high-energy tail of this distribution enables carriers to overcome energy barriers, thereby enhancing quantum efficiency - a phenomenon known as photothermionic emission (PTE). Despite its importance, the onset and mechanisms of PTE remain under debate. Using real-time time-dependent density functional theory (rt-TDDFT), we investigate ultrafast carrier thermalization in two-dimensional (2D) materials graphene and PtTe$_{2}$, and the results reveal distinct differences. In graphene, both electrons and holes thermalize into Fermi-Dirac distributions with good agreement to experiment, while PtTe$_{2}$ exhibits anomalous high-energy tails for both electrons and holes, deviating significantly from Fermi-Dirac behavior. We attribute this anomaly to differences in orbital coupling between the two materials, from which we derive design principles for identifying optimal PTE candidates and, ultimately, improving photodetector performance.
|
Received: 17 January 2025
Revised: 06 March 2025
Accepted manuscript online: 18 March 2025
|
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
| Fund: Project supported by the Natural Science Foundation of Chongqing of China (Grant No. CSTB2023NSCQ-LZX0087) and the National Natural Science Foundation of China (Grant Nos. 62074021 and 12174380). |
Corresponding Authors:
Zhi Wang, Wen Xiong, Xingzhan Wei
E-mail: wangzhi@semi.ac.cn;xiongwen@cigit.ac.cn;weixingzhan@cigit.ac.cn
|
Cite this article:
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战) Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling 2025 Chin. Phys. B 34 077103
|
[1] Scales C and Berini P 2010 IEEE J. Quantum Electron. 46 633 [2] Grajower M, Levy U and Khurgin J B 2018 ACS Photon. 5 4030 [3] Vabbina P, Choudhary N, Chowdhury A A, Sinha R, Karabiyik M, Das S, Choi W and Pala N 2015 ACS Appl. Mater. Interfaces 7 15206 [4] Wang X, Cheng Z, Xu K, Tsang H K and Xu J B 2013 Nat. Photon. 7 888 [5] Li X, Zhu M, Du M, Lv Z, Zhang L, Li Y, Yang Y, Yang T, Li X,Wang K, Zhu H and Fang Y 2015 Small 12 595 [6] Yu W, Li S, Zhang Y, Ma W, Sun T, Yuan J, Fu K and Bao Q 2017 Small 13 1700268 [7] Zeng L, Wu D, Jie J, Ren X, Hu X, Lau S P, Chai Y and Tsang Y H 2020 Adv. Mater. 32 2004412 [8] Zeng L, Han W, Ren X, Li X, Wu D, Liu S, Wang H, Lau S P, Tsang Y H, Shan C X and Jie J 2023 Nano Lett. 23 8241 [9] Allen P B 1987 Phys. Rev. Lett. 59 1460 [10] Massicotte M, Schmidt P, Vialla F, Watanabe K, Taniguchi T, Tielrooij K J and Koppens F H L 2016 Nat. Commun. 7 12174 [11] Fu S, du Fossé I, Jia X, Xu J, Yu X, Zhang H, ZhengW, Krasel S, Chen Z,Wang Z M, Tielrooij K J, Bonn M, Houtepen A J andWang H I 2021 Sci. Adv. 7 eabd9061 [12] Paul K K, Kim J H and Lee Y H 2021 Nat. Rev. Phys. 3 178 [13] Peng L, Liu L, Du S, Bodepudi S C, Li L, Liu W, Lai R, Cao X, Fang W, Liu Y, Liu X, Lv J, Abid M, Liu J, Jin S, Wu K, Lin M L, Cong X, Tan P H, Zhu H, Xiong Q, Wang X, Hu W, Duan X, Yu B, Xu Z, Xu Y and Gao C 2022 InfoMat 4 e12309 [14] Johannsen J C, Ulstrup S, Cilento F, Crepaldi A, Zacchigna M, Cacho C, Turcu I C E, Springate E, Fromm F, Raidel C, Seyller T, Parmigiani F, Grioni M and Hofmann P 2013 Phys. Rev. Lett. 111 027403 [15] Gierz I, Petersen J C, Mitrano M, Cacho C, Turcu I C E, Springate E, Stöhr A, Köhler A, Starke U and Cavalleri A 2013 Nat. Mater. 12 1119 [16] Lui C H, Mak K F, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 127404 [17] Block A, Liebel M, Yu R, Spector M, Sivan Y, García de Abajo F J and van Hulst N F 2019 Sci. Adv. 5 eaav8965 [18] Wu S and Sheldon M 2023 Annu. Rev. Phys. Chem. 74 521 [19] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N 2017 Nano Lett. 17 5805 [20] Uehlein M, Weber S T and Rethfeld B 2022 Nanomaterials 12 1655 [21] Carpene E 2006 Phys. Rev. B 74 024301 [22] Shin T, Teitelbaum S W, Wolfson J, Kandyla M and Nelson K A 2015 J. Chem. Phys. 143 194705 [23] Wang X, Nie S, Li J, Clinite R, Clark J E and Cao J 2010 Phys. Rev. B 81 220301 [24] Kim R, Perebeinos V and Avouris P 2011 Phys. Rev. B 84 075449 [25] Sadasivam S, Chan M K Y and Darancet P 2017 Phys. Rev. Lett. 119 136602 [26] Riffe D M and Wilson R B 2023 Phys. Rev. B 107 214309 [27] Nielsen D O, Van de Walle C G, Pantelides S T, Schrimpf R D, Fleetwood D M and Fischetti M V 2023 Phys. Rev. B 108 155203 [28] Girotto N, Caruso F and Novko D 2023 J. Phys. Chem. C 127 16515 [29] Riffe D M and Wilson R B 2024 Phys. Rev. B 109 184310 [30] Saavedra J R M, Asenjo-Garcia A and García de Abajo F J 2016 ACS Photon. 3 1637 [31] Caruso F, Novko D and Draxl C 2020 Phys. Rev. B 101 035128 [32] Perfetto E and Stefanucci G 2023 Nano Lett. 23 7029 [33] Modine N A and Hatcher R M 2015 J. Chem. Phys. 142 204111 [34] Wang Z, Li S-S and Wang L-W 2015 Phys. Rev. Lett. 114 063004 [35] Silaeva E P, Bevillon E, Stoian R and Colombier J P 2018 Phys. Rev. B 98 094306 [36] Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A and Keller U 2019 Nat. Phys. 15 1145 [37] Schumacher Z, Sato S A, Neb S, Niedermayr A, Gallmann L, Rubio A and Keller U 2023 Proc. Natl. Acad. Sci. 120 e2221725120 [38] Kachan E, Tsaturyan A, Stoian R and Colombier J P 2023 Eur. Phys. J. Spec. Top. 232 2241 [39] Shang N Z, Huang C, Chen Q, Liu C, Yao G J, Sun Z P, Meng S, Liu K H and Hong H 2024 Sci. Bull. 69 2522 [40] Hwang E H, Hu B Y K and Das Sarma S 2007 Phys. Rev. B 76 115434 [41] Breusing M, Kuehn S, Winzer T, Malić E, Milde F, Severin N, Rabe J P, Ropers C, Knorr A and Elsaesser T 2011 Phys. Rev. B 83 153410 [42] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S and Koppens F H L 2013 Nat. Phys. 9 248 [43] Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G and Polini M 2013 Nat. Commun. 4 1987 [44] Nie Z, Long R, Sun L, Huang C C, Zhang J, Xiong Q, Hewak D W, Shen Z, Prezhdo O V and Loh Z H 2014 ACS Nano 8 10931 [45] Rohde G, Stange A, Müller A, Behrendt M, Oloff L P, Hanff K, Albert T J, Hein P, Rossnagel K and Bauer M 2018 Phys. Rev. Lett. 121 256401 [46] Weber S T and Rethfeld B 2019 Phys. Rev. B 99 174314 [47] Lloyd-Hughes J, Oppeneer P M, Pereira dos Santos T, et al. 2021 J. Phys.: Condens. Matter 33 353001 [48] de Vos E W, Neb S, Niedermayr A, Burri F, Hollm M, Gallmann L and Keller U 2023 Phys. Rev. Lett. 131 226901 [49] Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M and Brongersma M L 2023 Science 382 299 [50] Ma J, Wang Z and Wang L W 2015 Nat. Commun. 6 10107 [51] Liu H W, Liu W H, Suo Z J, Wang Z, Luo J W, Li S S and Wang L W 2022 Proc. Natl. Acad. Sci. 119 e2122534119 [52] LiuWH, Gu Y X,Wang Z, Li S S,Wang LWand Luo J W 2023 Phys. Rev. Lett. 130 146901 [53] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [54] Baskin Y and Meyer L 1955 Phys. Rev. 100 544 [55] Li J, Kolekar S, Ghorbani-Asl M, Lehnert T, Biskupek J, Kaiser U, Krasheninnikov A V and Batzill M 2021 ACS Nano 15 13249 [56] Charlier J C, Gonze X and Michenaud J P 1991 Phys. Rev. B 43 4579 [57] Zakharchenko K V, Katsnelson M I and Fasolino A 2009 Phys. Rev. Lett. 102 046808 [58] Li C, Debnath B, Tan X, Su S, Xu K, Ge S, Neupane M R and Lake R K 2018 Carbon 138 451 [59] Luo B, Yao Y, Tian E, Song H, Wang X, Li G, Xi K, Li B, Song H and Li L 2019 Proc. Natl. Acad. Sci. 116 17213 [60] Villaos R A B, Crisostomo C P, Huang Z Q, Huang S M, Padama A A B, Albao M A, Lin H and Chuang F C 2019 npj 2D Mater. Appl. 3 2 [61] Lin M K, Villaos R A B, Hlevyack J A, Chen P, Liu R Y, Hsu C H, Avila J, Mo S K, Chuang F C and Chiang T C 2020 Phys. Rev. Lett. 124 036402 [62] Zhang J, Xie Y, Hu Y and Shao H 2020 Appl. Surf. Sci. 532 147387 [63] Shahrokhi M 2017 Diamond Relat. Mater. 77 35 [64] LiuWH, Luo JW, Li S S and Wang L W 2020 Phys. Rev. B 102 184308 [65] LiuWH, Luo JW, Li S S and Wang L W 2022 Phys. Rev. B 105 224306 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|