Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067101    DOI: 10.1088/1674-1056/adca18
Special Issue: SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential

Yao-Yuan Zhang(章耀元)1, Meng-Qiu Long(龙孟秋)2,†, Sai-Jie Cheng(程赛杰)3, and Wu-Xing Zhou(周五星)3,‡
1 Dundee International Institute, Central South University, Changsha 410083, China;
2 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha 410083, China;
3 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract  This study presents a systematic investigation of thermal transport properties in a novel class of carbon-based graphene-like materials (AKCs). Through first-principles calculations combined with the phonon Boltzmann transport equation and machine-learning potential, we analyzed the lattice thermal conductivity and its microscopic mechanisms in three structures: AKC60, AKC33, and AKC41. The research reveals that these materials exhibit significant in-plane thermal conductivity at room temperature (191.0 W/m$\cdot$K, 122.6 W/m$\cdot$K, and 248.3 W/m$\cdot$K, respectively), though an order of magnitude lower than that of graphene. Through detailed analysis of phonon dispersion relations, group velocities, three-phonon scattering phase space, and Grüneisen parameters, we uncovered the physical origins of AKCs' relatively lower thermal conductivity. The findings indicate that despite AKC60's larger primitive cell, its better preservation of graphene's honeycomb structure leads to superior harmonic properties, resulting in higher thermal conductivity than that of AKC33 with its smaller primitive cell. These discoveries provide valuable guidance for AKCs' applications in future electronic devices.
Keywords:  density functional theory      thermal conductivity      two-dimensional materials  
Received:  26 January 2025      Revised:  31 March 2025      Accepted manuscript online:  08 April 2025
PACS:  71.15.-m (Methods of electronic structure calculations)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
  68.90.+g (Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074115) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2023RC3176).
Corresponding Authors:  Meng-Qiu Long, Wu-Xing Zhou     E-mail:  mqlong@csu.edu.cn;wuxingzhou@hnu.edu.cn

Cite this article: 

Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星) Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential 2025 Chin. Phys. B 34 067101

[1] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R and Thong J T 2014 Nat. Commun. 5 3689
[2] Balandin A A, Ghosh S, BaoW, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[3] Sławińska J, Zasada I and Klusek Z 2010 Phys. Rev. B 81 155433
[4] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[5] Zhou S Y, Gweon G H, Fedorov A V, First D, De Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770
[6] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[7] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R and Richardson T J 2011 ACS Nano 5 1042
[8] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043
[9] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O and Pegna D 2018 Science 360 199
[10] Fang Y, Liu Y, Qi L, Xue Y and Li Y 2022 2D Chem. Soc. Rev. 51 2681
[11] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[12] Wu C W, Zhou W X, Xie G, Chen X K, Wu D and Fan Z Q 2022 Nanotechnology 33 215402
[13] Du Q S, Tang P D, Huang H L, Du F L, Huang K, Xie N Z, Long S Y, Li Y M, Qiu J S and Huang RB 2017 Sci. Rep. 7 1
[14] Zhang Z, Pham H D M, Perepichka D F and Khaliullin R Z 2024 Nat. Commun. 15 1953
[15] Liu P F, Li X, Li J, Zhu J, Tong Z, Kofu M, Nirei M, Xu J, Yin W and Wang F 2024 Natl. Sci. Rev. 11 nwae216
[16] Xiong J H, Qi Z J, Liang K, Sun X, Sun Z P, Wang Q J, Chen L W, Wu G and Shen W 2023 Chin. Phys. B 32 128101
[17] Cheng Y, Fan Z, Zhang T, Nomura M, Volz S, Zhu G, Li B and Xiong S 2023 Mater. Today Phys. 35 101093
[18] Qiu Z, Hu Y, Li D, Hu T, Xiao H, Feng C and Li D 2023 Chin. Phys. B 32 54402
[19] Wu X, Zhou W, Dong H, Ying P, Wang Y, Song B, Fan Z and Xiong S 2024 J. Chem. Phys. 161 014103
[20] Li Y, Liu Y and Hu S 2024 Chin. Phys. B 33 47401
[21] Wu C-W, Pan H, Zeng Y J, Zhou W X, Chen K Q and Zhang G 2023 Nanoscale 15 6732
[22] Zhou W, Cheng Y, Chen K, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[23] Zeng Y J, Feng Y X, Tang L M and Chen K Q 2021 Appl. Phys. Lett. 118 183103
[24] Kuang H L, Wu C W, Zeng Y J, Chen X K and Zhou W X 2024 Int. J. Therm. Sci. 205 109254
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Li Y, Li X,Wei B, Liu J, Pan F,Wang H, Cheng P, Zhang H, Xu D, Bao W, Wang J, Hao L, Deng G, Zhang G and Hong J 2024 Adv. Funct. Mater. 34 2411152
[28] Li C, Ravichandran N K, Lindsay L and Broido D 2018 Phys. Rev. Lett. 121 175901
[29] Yang X, Jena A, Meng F, Wen S, Ma J, Li X and Li W 2021 Mater. Today Phys. 18 100315
[30] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[31] Mortazavi B, Podryabinkin E V, Novikov I S, Rabczuk T, Zhuang X and Shapeev A V 2021 Comput. Phys. Commun. 258 107583
[32] Mortazavi B, Novikov I S, Podryabinkin E V, Roche S, Rabczuk T, Shapeev A V and Zhuang X 2020 Appl. Mater. Today 20 100685
[33] Fan Z, Zeng Z, Zhang C, Wang Y, Song K, Dong H, Chen Y and Ala- Nissila T 2021 Phys. Rev. B 104 104309
[34] Novikov I S, Gubaev K, Podryabinkin E V and Shapeev A V 2021 Mach. Learn.: Sci. Technol. 2 25002
[35] Zhou W X, Wu C W, Cao H R, Zeng Y J, Xie G and Zhang G 2025 Mater. Today Phys. 52 101677
[36] Duan F, Shen C, Zhang H and Qin G 2022 Phys. Rev. B 105 125406
[37] Wei L, Jin X, Zhou Z, Yang X, Wang G and Zhou X 2024 Phys. Rev. B 110 45406
[38] Xie Q Y, Xiao F, Zhang K W and Wang B T 2024 Phys. Rev. B 110 45203
[39] Ding X, Jin X, Chang Z, Li D, Zhou X, Yang X andWang R 2024 Phys. Rev. B 110 54304
[40] Lin Y Q, Cao S H, Hu C E, Geng H Y and Chen X R 2024 Phys. Rev. B 110 75414
[41] Li Q, Chen Y, Wei L, Chen H, Huang Y, Zhu Y, Zhu W, An D, Song J and Gan Q 2024 Nat. Commun. 15 5065
[42] Xu Y, Li Z and Duan W 2014 Small 10 2182
[1] Anomalous ultrafast thermalization of photoexcited carriers in two-dimensional materials induced by orbital coupling
Zhuoqun Wen(文卓群), Haiyu Zhu(诸海渝), Wen-Hao Liu(刘文浩), Zhi Wang(王峙), Wen Xiong(熊稳), and Xingzhan Wei(魏兴战). Chin. Phys. B, 2025, 34(7): 077103.
[2] Enhancement of thermal conductivity in diamond/Al composites through vacuum-pressure thermal diffusion sintering
Wenxia Zhang(张文霞), Weixia Shen(沈维霞), Chao Fang(房超), Ye Wang(王烨), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Kenan Li(黎克楠), Biao Wan(万彪), and Zhuangfei Zhang(张壮飞). Chin. Phys. B, 2025, 34(7): 070703.
[3] Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁). Chin. Phys. B, 2025, 34(6): 067303.
[4] High-order harmonic generation of methane in an elliptically polarized field
Shu-Shan Zhou(周书山), Yu-Long Li(李玉龙), Zhi-Xue Zhao(赵志学), Man Xing(幸满), Nan Xu(许楠), Hao Wang(王浩), Jun Wang(王俊), Xi Zhao(赵曦), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2025, 34(6): 063202.
[5] Photophysical property of fluorescent guanine analogs for selectively recognizing acetylated cytosine: A theoretical study
Xiaolin Chen(陈晓琳), Xixi Cui(崔习习), Yongkang Lyu(吕永康), Chenyang Zhang(张晨阳), Changzhe Zhang(张常哲), and Qingtian Meng(孟庆田). Chin. Phys. B, 2025, 34(5): 053102.
[6] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[7] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[8] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[9] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[10] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound VAs
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[11] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[12] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[13] Theoretical study on the effective thermal conductivity of silica aerogels based on a cross-aligned and cubic pore model
Kuncan Zheng(郑坤灿), Zhendong Li(李震东), Yutong Cao(曹豫通), Ben Liu(刘犇)), and Junlei Hu(胡君磊). Chin. Phys. B, 2024, 33(6): 064401.
[14] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[15] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
No Suggested Reading articles found!