|
Special Issue:
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
|
| SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications |
Prev
Next
|
|
|
Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential |
| Yao-Yuan Zhang(章耀元)1, Meng-Qiu Long(龙孟秋)2,†, Sai-Jie Cheng(程赛杰)3, and Wu-Xing Zhou(周五星)3,‡ |
1 Dundee International Institute, Central South University, Changsha 410083, China; 2 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University, Changsha 410083, China; 3 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
|
|
Abstract This study presents a systematic investigation of thermal transport properties in a novel class of carbon-based graphene-like materials (AKCs). Through first-principles calculations combined with the phonon Boltzmann transport equation and machine-learning potential, we analyzed the lattice thermal conductivity and its microscopic mechanisms in three structures: AKC60, AKC33, and AKC41. The research reveals that these materials exhibit significant in-plane thermal conductivity at room temperature (191.0 W/m$\cdot$K, 122.6 W/m$\cdot$K, and 248.3 W/m$\cdot$K, respectively), though an order of magnitude lower than that of graphene. Through detailed analysis of phonon dispersion relations, group velocities, three-phonon scattering phase space, and Grüneisen parameters, we uncovered the physical origins of AKCs' relatively lower thermal conductivity. The findings indicate that despite AKC60's larger primitive cell, its better preservation of graphene's honeycomb structure leads to superior harmonic properties, resulting in higher thermal conductivity than that of AKC33 with its smaller primitive cell. These discoveries provide valuable guidance for AKCs' applications in future electronic devices.
|
Received: 26 January 2025
Revised: 31 March 2025
Accepted manuscript online: 08 April 2025
|
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
| |
51.20.+d
|
(Viscosity, diffusion, and thermal conductivity)
|
| |
68.90.+g
|
(Other topics in structure, and nonelectronic properties of surfaces and interfaces; thin films and low-dimensional structures)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12074115) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2023RC3176). |
Corresponding Authors:
Meng-Qiu Long, Wu-Xing Zhou
E-mail: mqlong@csu.edu.cn;wuxingzhou@hnu.edu.cn
|
Cite this article:
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星) Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential 2025 Chin. Phys. B 34 067101
|
[1] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R and Thong J T 2014 Nat. Commun. 5 3689 [2] Balandin A A, Ghosh S, BaoW, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902 [3] Sławińska J, Zasada I and Klusek Z 2010 Phys. Rev. B 81 155433 [4] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820 [5] Zhou S Y, Gweon G H, Fedorov A V, First D, De Heer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara A 2007 Nat. Mater. 6 770 [6] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951 [7] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R and Richardson T J 2011 ACS Nano 5 1042 [8] Dresselhaus M S, Chen G, Tang M Y, Yang R G, Lee H, Wang D Z, Ren Z F, Fleurial J P and Gogna P 2007 Adv. Mater. 19 1043 [9] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O and Pegna D 2018 Science 360 199 [10] Fang Y, Liu Y, Qi L, Xue Y and Li Y 2022 2D Chem. Soc. Rev. 51 2681 [11] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766 [12] Wu C W, Zhou W X, Xie G, Chen X K, Wu D and Fan Z Q 2022 Nanotechnology 33 215402 [13] Du Q S, Tang P D, Huang H L, Du F L, Huang K, Xie N Z, Long S Y, Li Y M, Qiu J S and Huang RB 2017 Sci. Rep. 7 1 [14] Zhang Z, Pham H D M, Perepichka D F and Khaliullin R Z 2024 Nat. Commun. 15 1953 [15] Liu P F, Li X, Li J, Zhu J, Tong Z, Kofu M, Nirei M, Xu J, Yin W and Wang F 2024 Natl. Sci. Rev. 11 nwae216 [16] Xiong J H, Qi Z J, Liang K, Sun X, Sun Z P, Wang Q J, Chen L W, Wu G and Shen W 2023 Chin. Phys. B 32 128101 [17] Cheng Y, Fan Z, Zhang T, Nomura M, Volz S, Zhu G, Li B and Xiong S 2023 Mater. Today Phys. 35 101093 [18] Qiu Z, Hu Y, Li D, Hu T, Xiao H, Feng C and Li D 2023 Chin. Phys. B 32 54402 [19] Wu X, Zhou W, Dong H, Ying P, Wang Y, Song B, Fan Z and Xiong S 2024 J. Chem. Phys. 161 014103 [20] Li Y, Liu Y and Hu S 2024 Chin. Phys. B 33 47401 [21] Wu C-W, Pan H, Zeng Y J, Zhou W X, Chen K Q and Zhang G 2023 Nanoscale 15 6732 [22] Zhou W, Cheng Y, Chen K, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 [23] Zeng Y J, Feng Y X, Tang L M and Chen K Q 2021 Appl. Phys. Lett. 118 183103 [24] Kuang H L, Wu C W, Zeng Y J, Chen X K and Zhou W X 2024 Int. J. Therm. Sci. 205 109254 [25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [27] Li Y, Li X,Wei B, Liu J, Pan F,Wang H, Cheng P, Zhang H, Xu D, Bao W, Wang J, Hao L, Deng G, Zhang G and Hong J 2024 Adv. Funct. Mater. 34 2411152 [28] Li C, Ravichandran N K, Lindsay L and Broido D 2018 Phys. Rev. Lett. 121 175901 [29] Yang X, Jena A, Meng F, Wen S, Ma J, Li X and Li W 2021 Mater. Today Phys. 18 100315 [30] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [31] Mortazavi B, Podryabinkin E V, Novikov I S, Rabczuk T, Zhuang X and Shapeev A V 2021 Comput. Phys. Commun. 258 107583 [32] Mortazavi B, Novikov I S, Podryabinkin E V, Roche S, Rabczuk T, Shapeev A V and Zhuang X 2020 Appl. Mater. Today 20 100685 [33] Fan Z, Zeng Z, Zhang C, Wang Y, Song K, Dong H, Chen Y and Ala- Nissila T 2021 Phys. Rev. B 104 104309 [34] Novikov I S, Gubaev K, Podryabinkin E V and Shapeev A V 2021 Mach. Learn.: Sci. Technol. 2 25002 [35] Zhou W X, Wu C W, Cao H R, Zeng Y J, Xie G and Zhang G 2025 Mater. Today Phys. 52 101677 [36] Duan F, Shen C, Zhang H and Qin G 2022 Phys. Rev. B 105 125406 [37] Wei L, Jin X, Zhou Z, Yang X, Wang G and Zhou X 2024 Phys. Rev. B 110 45406 [38] Xie Q Y, Xiao F, Zhang K W and Wang B T 2024 Phys. Rev. B 110 45203 [39] Ding X, Jin X, Chang Z, Li D, Zhou X, Yang X andWang R 2024 Phys. Rev. B 110 54304 [40] Lin Y Q, Cao S H, Hu C E, Geng H Y and Chen X R 2024 Phys. Rev. B 110 75414 [41] Li Q, Chen Y, Wei L, Chen H, Huang Y, Zhu Y, Zhu W, An D, Song J and Gan Q 2024 Nat. Commun. 15 5065 [42] Xu Y, Li Z and Duan W 2014 Small 10 2182 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|