Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054401    DOI: 10.1088/1674-1056/adb9ca
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives

Xuanyi Yang(杨烜屹)1, Xin Huang(黄鑫)2, Chaoyang Zhang(张朝阳)2,3, Yanqing Wang(王延青)4, and Yuxiang Ni(倪宇翔)1,†
1 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
2 Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, China;
3 Beijing Computational Science Research Center, Beijing 100048, China;
4 College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
Abstract  The incorporation of graphene fillers into polymer matrices has been recognized for its potential to enhance thermal conductivity, which is particularly beneficial for applications in thermal management. The uniformity of graphene dispersion is pivotal to achieving optimal thermal conductivity, thereby directly influencing the effectiveness of thermal management, including the mitigation of local hot-spot temperatures. This research employs a quantitative approach to assess the distribution of graphene fillers within a PBX (plastic-bonded explosive) matrix, focusing specifically on the thermal management of hot spots. Through finite element method (FEM) simulations, we have explored the impact of graphene filler orientation, proximity to the central heat source, and spatial clustering on heat transfer. Our findings indicate that the strategic distribution of graphene fillers can create efficient thermal conduction channels, which significantly reduce the temperatures at local hot spots. In a model containing 0.336% graphene by volume, the central hot-spot temperature was reduced by approximately 60 K compared to a pure PBX material, under a heat flux of 600 W/m2. This study offers valuable insights into the optimization of the spatial arrangement of low-concentration graphene fillers, aiming to improve the thermal management capabilities of HMX-based PBX explosives.
Keywords:  thermal management      graphene fillers      spatial distribution optimization      finite element analysis      hot-spot temperature  
Received:  12 December 2024      Revised:  11 February 2025      Accepted manuscript online:  25 February 2025
PACS:  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U2330208).
Corresponding Authors:  Yuxiang Ni     E-mail:  yuxiang.ni@swjtu.edu.cn

Cite this article: 

Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔) Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives 2025 Chin. Phys. B 34 054401

[1] Mares J, Miller J, Sharp N, et al. 2013 J. Appl. Phys. 113 044904
[2] Chen P, Huang F, and Ding Y 2007 J. Mater. Sci. 42 5272
[3] Liu J, Hao G, Rong Y, et al. 2017 Combust. Explos. Shock Waves 53 744
[4] Tarver C M and Tran T D 2004 Combust. Flame. 137 50
[5] Son S, Berghout H, Bolme C, et al. 2000 Proc. Combust. Inst. 28 919
[6] Lin C, Zeng C,Wen Y, et al. 2019 ACS Appl. Mater. Interfaces 12 4002
[7] Li Y, Wu P, Hua C, et al. 2019 Cent. Eur. J. Energetic Mater. 16 295
[8] Xiao J, Fang G, Ji G, et al. 2005 Chin. Sci. Bull. 50 21
[9] Zhang P, Guo X Y, Zhang J Y, et al. 2014 J. Energetic Mater. 32 278
[10] Peng X, Jiang P, Ouyang Y, et al. 2021 Nanotechnology 33 035707
[11] Wang J, Zhang Z, Shi R, et al. 2020 Adv. Mater. Interfaces 7 1901582
[12] Zhang Y C, Yu W H, and Xu S M 2023 Rare Met. 42 2688
[13] Liu R and Chen P 2018 Mech. Mater. 124 106
[14] Parker G R, Heatwole E M, Holmes M D, et al. 2020 Combust. Flame. 215 295
[15] Zhang C, Ma D, Shang M, et al. 2022 Mater. Today Phys. 22 100605
[16] Ma D, Ding H,Wang X, et al. 2017 Int. J. Heat Mass Transfer 108 940
[17] Yang N, Hu S, Ma D, Lu T and Li B 2015 Sci. Rep. 5 14878
[18] He G, Yang Z, Zhou X, et al. 2016 Compos. Sci. Technol. 131 22
[19] Fu Y, Hansson J, Liu Y, et al. 2020 2D Mater. 7 012001
[20] Wu Z P, Zhang C, Hu S Q, et al. 2023 Acta Phys. Sin. 72 184401 (in Chinese)
[21] Liu L, Xu C, Yang Y, et al. 2025 Mater. Horiz. 12 64
[22] Łapińska A, Grochowska N, Antonowicz J, Michalski P, Dydek K, Dużyńska A, Daniszewska A, Ojrzyńska M, Zeranska K and Zdrojek M 2022 Sci. Rep. 12 19038
[23] Shimamura A, Hotta Y, Hyuga H, et al. 2020 Sci. Rep. 10 14926
[24] Wang J, Li C, Li J, et al. 2021 Carbon 175 259
[25] Yang Q, Zhang Z, Gong X, et al. 2020 Heat Mass Transfer 56 1931
[26] Lin C, Nie S, He G, et al. 2020 Compos. Part B Eng. 203 108447
[27] Aurenhammer F and Klein R 2000 Handb. Comput. Geom. 5 201
[28] Gong G, Wei Z, Zhang F, et al. 2022 Environ. Monit. Assess. 194 428
[29] Cao Z, Huang X, Wang Y, et al. 2023 J. Mater. Sci. 58 4668
[30] Huang X, Zhi C, Lin Y, et al. 2020 Mater. Sci. Eng. R Rep. 142 100577
[31] Zhang X X, Yang Z J, Nie F and Yan Q L 2020 Energetic Mater. Front. 1 141
[1] Performance analysis of porous solar absorbers with high-temperature radiation cooling function
Haiyan Yu(于海燕), Anqi Chen(陈安琪), Mingdong Li(李明东), Ahali Hailati(阿哈里 海拉提), Xiaohu Wu(吴小虎), and Xiaohan Ren(任霄汉). Chin. Phys. B, 2025, 34(6): 068102.
[2] High peak power mini-array quantum cascade lasers operating in pulsed mode
Yuhang Zhang(章宇航), Yupei Wang(王渝沛), Xiaoyue Luo(罗晓玥), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Wu Zhao(赵武), Fangyuan Sun(孙方圆), Jun Wang(王俊), and Zheng-Ming Sun(孙正明). Chin. Phys. B, 2025, 34(1): 014204.
[3] Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
Guang-Wei Lu(卢光伟), Yao-Jun Li(李曜均), Xi-Chen Hu(胡曦辰), Si-Yu Chen(陈思宇), Hao Xu(徐豪), Ming-Yang Zhu(祝铭阳), Wen-Chao Yan(闫文超), and Li-Ming Chen(陈黎明). Chin. Phys. B, 2024, 33(6): 064101.
[4] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[5] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[6] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[7] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[8] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[9] Finite element analysis of ionic liquid gel soft actuator
Bin He(何斌), Cheng-Hong Zhang(张成红), An Ding(丁安). Chin. Phys. B, 2017, 26(12): 126102.
[10] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[11] Three-axis magnetic flux leakage in-line inspection simulation based on finite-element analysis
Feng Jian (冯健), Zhang Jun-Feng (张峻峰), Lu Sen-Xiang (卢森骧), Wang Hong-Yang (王宏阳), Ma Rui-Ze (马瑞泽). Chin. Phys. B, 2013, 22(1): 018103.
[12] Biomechanical behaviors of dragonfly wing: relationship between configuration and deformation
Ren Huai-Hui(任淮辉), Wang Xi-Shu(王习术), Chen Ying-Long(陈应龙), and Li Xu-Dong(李旭东) . Chin. Phys. B, 2012, 21(3): 034501.
[13] A novel anti-shock silicon etching apparatus for solving diaphragm release problems
Shi Sha-Li(石莎莉), Chen Da-Peng(陈大鹏), Ou Yi(欧毅), Jing Yu-Peng(景玉鹏), Xu Qiu-Xia(徐秋霞), and Ye Tian-Chun(叶甜春). Chin. Phys. B, 2010, 19(6): 060701.
[14] Temperature-related performance of Yb3+:YAG disk lasers and optimum design for diamond cooling
Cao Ding-Xiang(曹丁象), Yu Hai-Wu(於海武), Zheng Wan-Guo(郑万国), He Shao-Bo(贺少勃), and Wang Xiao-Feng(王晓峰). Chin. Phys. B, 2006, 15(12): 2963-2969.
No Suggested Reading articles found!