CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of interlayer bonded bilayer graphene on friction |
Yao-Long Li(李耀隆)1,2, Zhen-Guo Tian(田振国)1,2, Hai-Feng Yin(尹海峰)1,2, and Ren-Liang Zhang(张任良)1,2,† |
1 Hebei Key Laboratory of Mechanical Reliability for Heavy Equipment and Large Structures, Yanshan University, Qinhuangdao 066004, China; 2 School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics. The results show that the presence of the interlayer covalent bonds due to the local sp$^{3}$ hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%, depending on the coverage of interlayer sp$^{3}$ bonds and normal loads. For a certain coverage of interlayer sp$^{3}$ bonds, when the normal load of the slider reaches a certain value, the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider. Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds, which may be useful for applications of friction related graphene based nanodevices.
|
Received: 11 March 2024
Revised: 09 May 2024
Accepted manuscript online:
|
PACS:
|
61.48.Gh
|
(Structure of graphene)
|
|
62.20.Qp
|
(Friction, tribology, and hardness)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: The project supported by the Doctor Fund and the Program of independent Research for Young Teachers of Yanshan University (Grant Nos. B919 and 020000534). |
Corresponding Authors:
Ren-Liang Zhang
E-mail: zhrleo@ysu.edu.cn
|
Cite this article:
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良) Effect of interlayer bonded bilayer graphene on friction 2024 Chin. Phys. B 33 086103
|
[1] Peng Y, Li J, Tang X, Liu B, Chen X and Bai L 2020 Tribol. Lett. 68 22 [2] Hanaor D A, Gan Y and Einav I 2016 Tribol. Int. 93 229 [3] Li Y, Li S, Wang M and Zhang R 2024 Chin. Phys. B 33 046101 [4] Holmberg K and Erdemir A 2017 Friction 5 263 [5] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 [6] Berman D, Erdemir A and Sumant A V 2014 Mater. Today 17 31 [7] Sun J and Du S 2019 RSC Adv. 9 40642 [8] Berman D, Erdemir A and Sumant A V 2014 Appl. Phys. Lett. 105 231907 [9] Verhoeven G S, Dienwiebel M and Frenken J W 2004 Phys. Rev. B 70 165418 [10] Liu Z, Yang J, Grey F, Liu J Z, Liu Y, Wang Y, Yang Y, Cheng Y and Zheng Q 2012 Phys. Rev. Lett. 108 205503 [11] Popov A M, Lebedeva I V, Knizhnik A A, Lozovik Y E and Potapkin B V 2011 Phys. Rev. B 84 245437 [12] Kang J W, Park J and Kwon O K 2014 Physica E 58 88 [13] Kim S Y, Cho S Y, Kim K S and Kang J W 2013 Physica E 50 44 [14] Hwang H J and Kang J W 2014 Physica E 56 17 [15] Jeong J H, Kang S, Kim N, Joshi R and Lee G H 2022 Phys. Chem. Chem. Phys. 24 10684 [16] Yu M, Chen C, Liu Q, Mattioli C, Sang H, Shi G, Huang W, Shen K, Li Z and Ding P 2020 Nat. Chem. 12 1035 [17] Chogani A, Moosavi A, Bagheri Sarvestani A and Shariat M 2020 J. Mol. Liq. 301 112478 [18] Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y, Sun L, Soldatov A V, Wu Y, Liu B, Li B, Ying P, Zhang Y, Xu B, He J, Yu D, Liu Z, Zhao Z, Yue Y, Tian Y and Li X 2023 Nat. Mater. 22 42 [19] Ko J H, Kwon S, Byun I S, Choi J S, Park B H, Kim Y H and Park J Y 2013 Tribol. Lett. 50 137 [20] Kwon S, Ko J H, Jeon K J, Kim Y H and Park J Y 2012 Nano Lett. 12 6043 [21] Fessler G, Eren B, Gysin U, Glatzel T and Meyer E 2014 Appl. Phys. Lett. 104 041910 [22] Dong Y, Wu X and Martini A 2013 Nanotechnology 24 375701 [23] Li Q, Liu X Z, Kim S P, Shenoy V B, Sheehan P E, Robinson J T and Carpick R W 2014 Nano Lett. 14 5212 [24] Tang C, Zhang Y, Guo W and Chen C 2010 J. Phys. Chem. C 114 18091 [25] Martins L G P, Matos M J, Paschoal A R, Freire P T, Andrade N F, Aguiar A L, Kong J, Neves B R, de Oliveira A B and Mazzoni M S 2017 Nat. Commun. 8 96 [26] Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C and Espinosa H D 2008 Nat. Nanotechnol. 3 626 [27] Kanasaki J, Inami E, Tanimura K, Ohnishi H and Nasu K 2009 Phys. Rev. Lett. 102 087402 [28] Kvashnin A G, Chernozatonskii L A, Yakobson B I and Sorokin P B 2014 Nano Lett. 14 676 [29] Tang C, Zhang Y, Guo W and Chen C 2010 J. Phys. Chem. C 114 18091 [30] Chien S K, Yang Y T and Chen C K 2011 Appl. Phys. Lett. 98 033107 [31] Li Y, Li Z, Li S and Zhang R 2023 Acta Phys. Sin. 72 243101 (in Chinese) [32] Xia Z, Guduru P and Curtin W 2007 Phys. Rev. Lett. 98 245501 [33] Albarakaty H A 2016 US Patents No. 9 318 348 B2 [2016-04-19] [34] Guo T, Sha Z D, Liu X, Zhang G, Guo T, Pei Q X and Zhang Y W 2015 Appl. Phys. A 120 1275 [35] Chang T, Zhang H, Guo Z, Guo X and Gao H 2015 Phys. Rev. Lett. 114 015504 [36] Wang K, Qu C, Wang J, Ouyang W, Ma M and Zheng Q 2019 ACS Appl. Mater. Interfaces 11 36169 [37] Chen J, Gao Y, Wang C, Zhang R, Zhao H and Fang H 2015 J. Phys. Chem. C 119 17362 [38] Zhang R, Li S, Li Y and Wang M 2022 J. Nano Res. 74 97 [39] Wang K, Ouyang W, Cao W, Ma M and Zheng Q 2019 Nanoscale 11 2186 [40] Kim H J and Chung K H 2020 Appl. Surf. Sci. 534 147629 [41] Yitian, Peng, Xingzhong, Zeng, Lei, Liu, Xingan, Cao, Kun and Zou 2017 Carbon 124 541 [42] Smolyanitsky A, Killgore J P and Tewary V K 2012 Phys. Rev. B 85 035412 [43] Chen X and Li J 2020 Carbon 158 1 [44] Li J, Li J and Luo J 2018 Adv. Sci. 5 1800810 [45] Kim W K and Falk M L 2009 Phys. Rev. B 80 235428 [46] Van Wijk M, Dienwiebel M, Frenken J and Fasolino A 2013 Phys. Rev. B 88 235423 [47] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401 [48] Hod O, Meyer E, Zheng Q and Urbakh M 2018 Nature 563 485 [49] Zhang H and Chang T 2018 Nanoscale 10 2447 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|