Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 058101    DOI: 10.1088/1674-1056/adb688
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure

Songyang Li(李松洋)1,2,3,4, Zhiguang Zhu(朱志光)1,2,3,4, Youzhi Zhang(张有志)1,2,3,4, Chengke Chen(陈成克)1,2,3,4, and Xiaojun Hu(胡晓君)1,2,3,4,†
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 Moganshan Diamond Research Center, Huzhou 313200, China;
3 Diamond Joint Research Center for Zhejiang University of Technology and Tanghe Scientific & Technology Company, Huzhou 313200, China;
4 Moganshan Institute Zhejiang University of Technology, Huzhou 313200, China
Abstract  It is a key challenge to prepare two-dimensional diamond (2D-diamond). Herein, we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum (Ta) atoms onto graphene substrates using a hot-filament chemical vapor deposition setup, followed by annealing treatment under different temperatures at ambient pressure. The results indicate that when the annealing temperature increases from 700 C to 1000 C, the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm. Meanwhile, the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase. As the annealing temperature continues to rise to 1100 C, a significant aggregation of Ta-containing compounds is observed in the samples, with no diamond structure detected. This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond. This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond.
Keywords:  graphene      two-dimensional diamond      vacuum annealing      phase transition  
Received:  07 December 2024      Revised:  08 February 2025      Accepted manuscript online:  17 February 2025
PACS:  81.05.ug (Diamond)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  83.10.Tv (Structural and phase changes)  
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. U1809210), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039, and 52102052), the Fund from Institute of Wenzhou, Zhejiang University (Grant Nos. XMGL-CX-202305 and XMGLKJZX- 202307), and the Project from Tanghe Scientific & Technology Company (Grant No. KYY-HX-20230024).
Corresponding Authors:  Xiaojun Hu     E-mail:  huxj@zjut.edu.cn

Cite this article: 

Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君) Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure 2025 Chin. Phys. B 34 058101

[1] Achard J, Silva F, Issaoui R, Brinza O and Gicquel A 2011 Diam. Relat. Mater. 20 145
[2] Friel I, Clewes S L, Dhillon H K, Perkins N and Scarsbrook G A 2009 Diam. Relat. Mater. 18 808
[3] Betzel G T, Lansley S P, Mckay D and Meyer J 2012 Med. Phys. 691 34
[4] Ryan M, Vijayan M, Flavia C, Settimio P and Arghya P 2016 Front. Bioeng. Biotechnol. 01 585
[5] Hongdong L, Shaoheng C, Jia L and Jie S 2015 J. Nanomater 2015 692562
[6] Sivek J, Leenaerts O, Partoens B and Peeters F M 2012 J. Phys. Chem. C 116 19240
[7] Zhu L, Li W and Ding F 2019 Nanoscale 10 4248
[8] Samarakoon D K and Wang X Q 2010 Acs Nano 4 4126
[9] Sun Z, Zhang C, Qiu D, Gao N and Li H 2020 Diam. Relat. Mater. 101 107641
[10] Cheng T, Liu Z and Liu Z 2020 J. Mater. Chem. C 39 13819
[11] Gupta S, Yang J H and Yakobson B I 2019 Nano Lett. 19 408
[12] Cai Z, Li B, Chen L, Wang Z, Fang S, Wang Y, Ma H and Jia X 2022 Chin. Phys. B 31 108104
[13] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401
[14] Antipina L Y and Sorokin P B 2015 J. Phys. Chem. C 119 2828
[15] Clark S M, Jeon K J, Chen J Y and Yoo C S 2013 Solid State Commun. 154 15
[16] Grayfer E D, Makotchenko V G, Kibis L S, Boronin A I, Pazhetnov E M, Zaikovskii V I and Fedorov V E 2013 Chem. Asian. J. 8 2015
[17] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J and Rotenberg E 2011 Angew. Chem. Int. Ed. 5 1042
[18] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610
[19] Diankov G, NeumannMand Goldhaber-Gordon D 2013 Angew. Chem. Int. Ed. 7 1324
[20] Bakharev P V, Huang M, Saxena M, Lee S W and Ruoff R S 2020 Nat. Nanotechnol. 15 59
[21] Chen C K, Fan D, Xu H, Jiang M Y, Li X, Lu S H, Ke C C and Hu X J 2022 Carbon 196 466
[22] Jiang M Y, Chen C K,Wang P, Guo D F, Han S J, Li X, Lu S H and Hu X J 2022 Proc. Natl. Acad. Sci. USA 119 2201451119
[23] Chen C K, Li Y, Guo D F, Ke C C, Fan D, Lu S H, Li X, Jiang M Y and Hu X J 2023 ACS Appl. Mater. Interfaces 15 30684
[24] Lu S H, Zhang X T, Chen C K, Jiang M Y, Li X and Hu X J 2024 J. Mater. Chem. A 12 27767
[25] Lu S H, Lei Y F, Zhu K and Hu X J 2025 Carbon 235 120092
[26] Zhu Z G, Jiang C Q, Chen C K, Lu S H, Jiang M Y, Li X and Hu X J 2023 Carbon 211 118098
[27] Zhu Z G, Chen C K, Lu S H, Li X and Hu X J 2025 Adv. Sci. 2025 2411504
[28] Zhu Y H, Zhu Z G, Chen C K, Jiang M Y, Li X, Lu S H and Hu X J 2024 Acta Phys. Sin. 73 028101 (in Chinese)
[29] Vora H and Moravec T J 1981 J. Appl. Phys. 52 6151
[30] Yeo R J, Rismani E, Dwivedi N, Blackwood H, Tan H R, Zhang Z, Tripathy S and Bhatia C S 2014 Diam. Relat. Mater. 44 100
[31] Dwivedi N, Yeo R J, Satyanarayana N, Kundu S, Tripathy S and Bhatia C S 2015 Sci. Rep. 5 7772
[32] Rao X, Yang J, Chen Z, Yuan Y, Chen Q, Feng X, Qin L and Zhang Y 2020 Bioact. Mater. 5 192
[1] Morphology-tuned phase transition of MnO2 nanorods under high pressure
Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). Chin. Phys. B, 2025, 34(6): 066105.
[2] Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar. Chin. Phys. B, 2025, 34(6): 066302.
[3] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[4] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[5] Irreversibility as a signature of non-equilibrium phase transition in large-scale human brain networks: An fMRI study
Jing Wang(王菁), Kejian Wu(吴克俭), Jiaqi Dong(董家奇), and Lianchun Yu(俞连春). Chin. Phys. B, 2025, 34(5): 058703.
[6] Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica
Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君). Chin. Phys. B, 2025, 34(4): 046101.
[7] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[8] Phase transition extracted by principal component analysis in the disordered Moore-Read state
Na Jiang(江娜), Shuaixin Fu(付帅鑫), Zhengzhi Ma(马正直), and Lian Wang(王莲). Chin. Phys. B, 2025, 34(4): 047306.
[9] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[10] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[11] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[12] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[13] Thickness-dependent magnetic property of FeNi thin film grown on flexible graphene substrate
Suixin Zhan(詹遂鑫), Shaokang Yuan(袁少康), Yuming Bai(白宇明), Fu Liu(刘福), Bohan Zhang(张博涵), Weijia Han(韩卫家), Tao Wang(王韬), Shengxiang Wang(汪胜祥), and Cai Zhou(周偲). Chin. Phys. B, 2025, 34(2): 027503.
[14] Understanding thermal hysteresis of ferroelectric phase transitions in BaTiO3 with combined first-principle-based approach and phase-field model
Cancan Shao(邵灿灿) and Houbing Huang(黄厚兵). Chin. Phys. B, 2025, 34(2): 027701.
[15] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
No Suggested Reading articles found!