1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China; 2 Moganshan Diamond Research Center, Huzhou 313200, China; 3 Diamond Joint Research Center for Zhejiang University of Technology and Tanghe Scientific & Technology Company, Huzhou 313200, China; 4 Moganshan Institute Zhejiang University of Technology, Huzhou 313200, China
Abstract It is a key challenge to prepare two-dimensional diamond (2D-diamond). Herein, we develop a method for synthesizing 2D-diamond by depositing monodisperse tantalum (Ta) atoms onto graphene substrates using a hot-filament chemical vapor deposition setup, followed by annealing treatment under different temperatures at ambient pressure. The results indicate that when the annealing temperature increases from 700 C to 1000 C, the size of the 2D-diamond found in the samples gradually increases from close to 20 nm to around 30 nm. Meanwhile, the size and number of amorphous carbon spheres and Ta-containing compounds between the graphene layers gradually increase. As the annealing temperature continues to rise to 1100 C, a significant aggregation of Ta-containing compounds is observed in the samples, with no diamond structure detected. This further confirms that monodisperse Ta atoms play a key role in graphene phase transition into 2D-diamond. This study provides a novel method for the ambient-pressure phase transition of graphene into 2D-diamond.
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. U1809210), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039, and 52102052), the Fund from Institute of Wenzhou, Zhejiang University (Grant Nos. XMGL-CX-202305 and XMGLKJZX- 202307), and the Project from Tanghe Scientific & Technology Company (Grant No. KYY-HX-20230024).
Corresponding Authors:
Xiaojun Hu
E-mail: huxj@zjut.edu.cn
Cite this article:
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君) Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure 2025 Chin. Phys. B 34 058101
[1] Achard J, Silva F, Issaoui R, Brinza O and Gicquel A 2011 Diam. Relat. Mater. 20 145 [2] Friel I, Clewes S L, Dhillon H K, Perkins N and Scarsbrook G A 2009 Diam. Relat. Mater. 18 808 [3] Betzel G T, Lansley S P, Mckay D and Meyer J 2012 Med. Phys. 691 34 [4] Ryan M, Vijayan M, Flavia C, Settimio P and Arghya P 2016 Front. Bioeng. Biotechnol. 01 585 [5] Hongdong L, Shaoheng C, Jia L and Jie S 2015 J. Nanomater 2015 692562 [6] Sivek J, Leenaerts O, Partoens B and Peeters F M 2012 J. Phys. Chem. C 116 19240 [7] Zhu L, Li W and Ding F 2019 Nanoscale 10 4248 [8] Samarakoon D K and Wang X Q 2010 Acs Nano 4 4126 [9] Sun Z, Zhang C, Qiu D, Gao N and Li H 2020 Diam. Relat. Mater. 101 107641 [10] Cheng T, Liu Z and Liu Z 2020 J. Mater. Chem. C 39 13819 [11] Gupta S, Yang J H and Yakobson B I 2019 Nano Lett. 19 408 [12] Cai Z, Li B, Chen L, Wang Z, Fang S, Wang Y, Ma H and Jia X 2022 Chin. Phys. B 31 108104 [13] Sofo J O, Chaudhari A S and Barber G D 2007 Phys. Rev. B 75 153401 [14] Antipina L Y and Sorokin P B 2015 J. Phys. Chem. C 119 2828 [15] Clark S M, Jeon K J, Chen J Y and Yoo C S 2013 Solid State Commun. 154 15 [16] Grayfer E D, Makotchenko V G, Kibis L S, Boronin A I, Pazhetnov E M, Zaikovskii V I and Fedorov V E 2013 Chem. Asian. J. 8 2015 [17] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J and Rotenberg E 2011 Angew. Chem. Int. Ed. 5 1042 [18] Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K and Novoselov K S 2009 Science 323 610 [19] Diankov G, NeumannMand Goldhaber-Gordon D 2013 Angew. Chem. Int. Ed. 7 1324 [20] Bakharev P V, Huang M, Saxena M, Lee S W and Ruoff R S 2020 Nat. Nanotechnol. 15 59 [21] Chen C K, Fan D, Xu H, Jiang M Y, Li X, Lu S H, Ke C C and Hu X J 2022 Carbon 196 466 [22] Jiang M Y, Chen C K,Wang P, Guo D F, Han S J, Li X, Lu S H and Hu X J 2022 Proc. Natl. Acad. Sci. USA 119 2201451119 [23] Chen C K, Li Y, Guo D F, Ke C C, Fan D, Lu S H, Li X, Jiang M Y and Hu X J 2023 ACS Appl. Mater. Interfaces 15 30684 [24] Lu S H, Zhang X T, Chen C K, Jiang M Y, Li X and Hu X J 2024 J. Mater. Chem. A 12 27767 [25] Lu S H, Lei Y F, Zhu K and Hu X J 2025 Carbon 235 120092 [26] Zhu Z G, Jiang C Q, Chen C K, Lu S H, Jiang M Y, Li X and Hu X J 2023 Carbon 211 118098 [27] Zhu Z G, Chen C K, Lu S H, Li X and Hu X J 2025 Adv. Sci. 2025 2411504 [28] Zhu Y H, Zhu Z G, Chen C K, Jiang M Y, Li X, Lu S H and Hu X J 2024 Acta Phys. Sin. 73 028101 (in Chinese) [29] Vora H and Moravec T J 1981 J. Appl. Phys. 52 6151 [30] Yeo R J, Rismani E, Dwivedi N, Blackwood H, Tan H R, Zhang Z, Tripathy S and Bhatia C S 2014 Diam. Relat. Mater. 44 100 [31] Dwivedi N, Yeo R J, Satyanarayana N, Kundu S, Tripathy S and Bhatia C S 2015 Sci. Rep. 5 7772 [32] Rao X, Yang J, Chen Z, Yuan Y, Chen Q, Feng X, Qin L and Zhang Y 2020 Bioact. Mater. 5 192
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.