1 State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
Abstract Spin-orbit interaction (SOI) can be introduced by the proximity effect to modulate the electronic properties of graphene-based heterostructures. In this work, we stack trilayer WSe on Bernal tetralayer graphene to investigate the influence of SOI on the anomalous Hall effect (AHE). In this structurally asymmetric device, by comparing the magnitude of AHE at positive and negative displacement fields, we find that AHE is strongly enhanced by bringing electrons in proximity to the WSe layer. Meanwhile, the enhanced AHE signal persists up to 80 K, providing important routes for topological device applications at high temperatures.
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2021YFA1400100 and 2024YFA1409700) and the National Natural Science Foudation of China (Grant Nos. 12374168 and T2325026).
Corresponding Authors:
Zhi-Gang Cheng, Jianming Lu
E-mail: zgcheng@iphy.ac.cn;jmlu@pku.edu.cn
Cite this article:
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明) Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction 2025 Chin. Phys. B 34 037201
[1] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 [2] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 [3] Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M and Young A F 2021 Nature 598 429 [4] Liu K, Zheng J, Sha Y, Lyu B, Li F, Park Y, Ren Y, Watanabe K, Taniguchi T, Jia J, Luo W, Shi Z, Jung J and Chen G 2024 Nat. Nanotechnol. 19 188 [5] Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Fu L, Park H and Ju L 2023 Nature 623 41 [6] Han T, Lu Z, Scuri G, Sung J, Wang J, Han T, Watanabe K, Taniguchi T, Park H and Ju L 2024 Nat. Nanotechnol. 19 181 [7] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K and Young A F 2022 Science 375 774 [8] Seiler A M, Geisenhof F R, Winterer F, Watanabe K, Taniguchi T, Xu T, Zhang F and Weitz R T 2022 Nature 608 298 [9] Chen H, Arora A, Song J C W and Loh K P 2023 Nat. Commun. 14 7925 [10] Wang Z, Ki D, Chen H, Berger H, MacDonald A H and Morpurgo A F 2015 Nat. Commun. 6 8339 [11] Yang B, Tu M F, Kim J, Wu Y, Wang H, Alicea J, Wu R, Bockrath M and Shi J 2016 2D Mater. 3 031012 [12] Wang Z, Ki D K, Khoo J Y, Mauro D, Berger H, Levitov L S and Morpurgo A F 2016 Phys. Rev. X 6 041020 [13] Yang B, Lohmann M, Barroso D, Liao I, Lin Z, Liu Y, Bartels L,Watanabe K, Taniguchi T and Shi J 2017 Phys. Rev. B 96 041409 [14] Völkl T, Rockinger T, Drienovsky M, Watanabe K, Taniguchi T, Weiss D and Eroms J 2017 Phys. Rev. B 96 125405 [15] Wakamura T, Reale F, Palczynski P, Guéron S, Mattevi C and Bouchiat H 2018 Phys. Rev. Lett. 120 106802 [16] Wakamura T, Reale F, Palczynski P, ZhaoMQ, Johnson A T C, Guéron S, Mattevi C, Ouerghi A and Bouchiat H 2019 Phys. Rev. B 99 245402 [17] Tiwari P, Srivastav S K and Bid A 2021 Phys. Rev. Lett. 126 096801 [18] Fülöp B, Márffy A, Zihlmann S, Gmitra M, Tóvári E, Szentpéteri B, Kedves M,Watanabe K, Taniguchi T, Fabian J, Schönenberger C, Makk P and Csonka S 2021 npj 2D Mater. Appl. 5 82 [19] Amann J, Völkl T, Rockinger T, Kochan D, Watanabe K, Taniguchi T, Fabian J, Weiss D and Eroms J 2022 Phys. Rev. B 105 115425 [20] Lin J X, Zhang Y H, Morissette E,Wang Z, Liu S, Rhodes D,Watanabe K, Taniguchi T, Hone J and Li J I A 2022 Science 375 437 [21] Sha Y, Zheng J, Liu K, Du H, Watanabe K, Taniguchi T, Jia J, Shi Z, Zhong R and Chen G 2024 Science 384 414 [22] Han T, Lu Z, Yao Y, Yang J, Seo J, Yoon C, Watanabe K, Taniguchi T, Fu L, Zhang F and Ju L 2024 Science 384 647 [23] Patterson C L, Sheekey O I, Arp T B, Holleis L F W, Koh J M, Choi Y, Xie T, Xu S, Redekop E, Babikyan G, Zhou H, Cheng X, Taniguchi T, Watanabe K, Jin C, Lantagne-Hurtubise E, Alicea J and Young A F 2024 arXiv:2408.10190[cond-mat.mes-hall] [24] Yang J, Shi X, Ye S, Yoon C, Lu Z, Kakani V, Seo J, Shi L,Watanabe K, Taniguchi T, Zhang F and Ju L 2024 arXiv:2408.09906[cond-mat.suprcon] [25] Han T, Lu Z, Yao Y, Shi L, Yang J, Seo J, Ye S, Wu Z, Zhou M, Liu H, Shi G, Hua Z, Watanabe K, Taniguchi T, Xiong P, Fu L and Ju L 2024 arXiv:2408.15233[cond-mat.mes-hall] [26] Koshino M and McCann E 2011 Phys. Rev. B 83 165443 [27] Grushina A L, Ki D K, Koshino M, Nicolet A A L, Faugeras C, McCann E, Potemski M and Morpurgo A F 2015 Nat. Commun. 6 6419 [28] Wu Z, Han Y, Lin J, Zhu W, He M, Xu S, Chen X, Lu H, Ye W, Han T, Wu Y, Long G, Shen J, Huang R, Wang L, He Y, Cai Y, Lortz R, Su D and Wang N 2015 Phys. Rev. B 92 075408 [29] Shi Y, Che S, Zhou K, Ge S, Pi Z, Espiritu T, Taniguchi T, Watanabe K, Barlas Y, Lake R and Lau C N 2018 Phys. Rev. Lett. 120 096802 [30] Hirahara T, Ebisuoka R, Oka T, Nakasuga T, Tajima S, Watanabe K, Taniguchi T and Yagi R 2018 Sci. Rep. 8 13992 [31] Che S, Shi Y, Yang J, Tian H, Chen R, Taniguchi T, Watanabe K, Smirnov D, Lau C N, Shimshoni E, Murthy G and Fertig H A 2020 Phys. Rev. Lett. 125 036803 [32] Liang M, Li S and Gao J H 2022 Phys. Rev. B 105 045419 [33] Klanurak I, Watanabe K, Taniguchi T, Chatraphorn S and Taychatanapat T 2024 Nano Lett. 24 6330 [34] Bing D, Wang Y, Bai J, Du R, Wu G and Liu L 2018 Opt. Commun. 406 128 [35] Cong C, Yu T, Sato K, Shang J, Saito R, Dresselhaus G F and Dresselhaus M S 2011 ACS Nano 5 8760 [36] Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O’Farrell E C T, Eda G, Castro Neto A H and Ozyilmaz B 2014 Nat. Commun. 5 4875 [37] Siriviboon P, Lin J X, Scammell H D, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Scheurer M S and Li J I A 2021 arXiv:2112.07127v1 [cond-mat.mes-hall] [38] Lin J X, Siriviboon P, Scammell H D, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Scheurer M S and Li J I A 2022 Nat. Phys. 18 1221 [39] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J and Tutuc E 2016 Nano Lett. 16 1989 [40] Iwasaki T, Endo K, Watanabe E, Tsuya D, Morita Y, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe K, Taniguchi T and Moriyama S 2020 ACS Appl. Mater. Interfaces 12 8533 [41] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.