Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 056101    DOI: 10.1088/1674-1056/adbaca
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Enhanced electronic and photoelectrical properties of two-dimensional Zn-doped SnS2

Xichen Chuai(揣喜臣)1,2, Peng Yin(殷鹏)3,4, Jiawei Wang(王嘉玮)1, Guanhua Yang(杨冠华)1, Congyan Lu(陆丛研)1, Di Geng(耿玓)1, Ling Li(李泠)1, Can Liu(刘灿)4,†, Zhongming Wei(魏钟鸣)3,‡, and Nianduan Lu(卢年端)1,§
1 Laboratory of Microelectronics Device & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
4 School of Physics, Renmin University of China, Beijing 100872, China
Abstract  Alloy engineering, with its ability to tune the electronic band structure, is regarded as an effective method for adjusting the electronic and optoelectronic properties of two-dimensional (2D) semiconductors. However, synthesizing metal-site substitution alloys remains challenging due to the low reactivity of metal precursors and the tendency for spatial phase separation during high-temperature growth. Here, we report the preparation of a high-quality metal-site substitution alloy, Zn0.167Sn0.833S2, via the chemical vapor transport method, which exhibits excellent photoresponsivity and enhanced electrical transport properties. Comprehensive characterization techniques, including Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and electron microscopy, unambiguously confirm the uniform Zn substitution in the as-prepared Zn0.167Sn0.833S2 alloy. Furthermore, the photodetector based on the Zn0.167Sn0.833S2 alloy demonstrated a high on/off ratio of 51 under white light, a wide spectral response range from 350 nm to 900 nm, and a broad dynamic power range of 80 dB under 638-nm illumination. In terms of transport properties, field-effect transistors (FETs) based on Zn0.167Sn0.833S2 achieved a carrier mobility of 6.5 cm2V1s1, which is six times higher than that of SnS2. This alloy semiconductor showcases significantly enhanced electronic and optoelectronic properties, offering great potential for the development of high-resolution photodetection technologies.
Keywords:  alloy engineering      metal-site substitution      photodetector      field-effect transistors  
Received:  30 November 2024      Revised:  12 January 2025      Accepted manuscript online:  27 February 2025
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the Beijing Natural Science Foundation (Grant No. Z220005), the National Key Research and Development Program of China (Grant Nos. 2022YFB3606902 and 2022YFA1405600), and the National Natural Science Foundation of China (Grant No. 12274456) by the Opening Project of the Laboratory of Microelectronic Devices & Integrated Technology, Chinese Academy of Sciences (CAS), Institute of Microelectronics, Chinese Academy of Sciences.
Corresponding Authors:  Can Liu, Zhongming Wei, Nianduan Lu     E-mail:  lunianduan@ime.ac.cn;zmwei@semi.ac.cn;canliu@ruc.edu.cn

Cite this article: 

Xichen Chuai(揣喜臣), Peng Yin(殷鹏), Jiawei Wang(王嘉玮), Guanhua Yang(杨冠华), Congyan Lu(陆丛研), Di Geng(耿玓), Ling Li(李泠), Can Liu(刘灿), Zhongming Wei(魏钟鸣), and Nianduan Lu(卢年端) Enhanced electronic and photoelectrical properties of two-dimensional Zn-doped SnS2 2025 Chin. Phys. B 34 056101

[1] Kim J, Pankow R M, Cho Y, et al. 2024 Nat. Electron. 7 234
[2] Zhang K, She Y, Cai X, et al. 2023 Nat. Nanotechnol. 18 48
[3] Zhou S, Bao C, Fan B, et al. 2023 Nature 614 75
[4] Yang P, Wang D, Zhao X, et al. 2022 Nat. Commun. 13 3238
[5] Zhou Z, Shen T, Wang P, et al. 2023 Sci. Bull. 68 173
[6] Zhou Z, Cui Y, Tan P H, et al. 2019 J. Semicond. 40 061001
[7] Wang B, Tang Z, Zheng H, et al. 2023 Chin. Phys. B 32 098508
[8] Wang Z, Tan C, Peng M, et al. 2024 Light Sci. Appl. 13 277
[9] Giri A, Park G and Jeong U 2023 Chem. Rev. 123 3329
[10] Xin K, Li L, Zhou Z, et al. 2024 Nat. Synth. 3 1176
[11] Gao H, Zhou H, Hao Y, et al. 2023 J. Semicond. 44 122001
[12] Zhao T, Guo J, Li T, et al. 2023 Chem. Soc. Rev. 52 1650
[13] Xue G, Qin B, Ma C, et al. 2024 Chem. Rev. 124 9785
[14] Xie Y, Liang F, Chi S, et al. 2020 ACS Appl. Mater. Interfaces 12 7351
[15] Wang B, Xing Y, Dong S, et al. 2023 Chin. Phys. B 32 098504
[16] Wang H C, Lin Y, Liu X, et al. 2023 Chin. Phys. B 32 018504
[17] Dong C, An X, Wu Z, et al. 2023 J. Semicond. 44 112001
[18] Wang X, Pan L, Yang J, et al. 2021 Adv. Mater. 33 2006908
[19] Zuo Y, Liu C, Ding L, et al. 2022 Nat. Commun. 13 1007
[20] Mann J, Ma Q, Odenthal P M, et al. 2014 Adv. Mater. 26 399
[21] Song J-G, Ryu G H, Lee S J, et al. 2015 Nat. Commun. 6 7817
[22] Wang F, Gao T, Zhang Q, et al. 2018 Adv. Mater. 31 1806306
[23] Huang Y, Sutter E, Sadowski J, et al. 2014 ACS Nano 8 10743
[24] De D, Manongdo J, See S, et al. 2013 Nanotechnology 24 025202
[25] Jia X, Tang C, Pan R, et al. 2018 ACS Appl. Mater. Interfaces 10 18073
[26] Patil S G and H T R 1971 J. Phys. D: Appl. Phys. 4 718
[27] Domingo G, Itoga R S and Kannewurf C R 1966 Phys. Rev. 143 536
[28] Zhou Z, Long M, Pan L, et al. 2018 ACS Nano 12 12416
[29] Zhang X, Tan Q H, Wu J B, et al. 2016 Nanoscale 8 6435
[30] Ribeiro H B, Pimenta M A and Matos C J S 2018 J. Raman. Spectrosc. 49 76
[31] Sriv T, Kim K and Cheong H 2018 Sci. Rep. 8 10194
[32] Prasad N and Karthikeyan B 2019 Nanoscale 11 4948
[33] Zhou X, Zhang Q, Gan L, et al. 2016 Adv. Funct. Mater. 26 4405
[34] Gao L, Chen C, Zeng K, et al. 2016 Light Sci. Appl. 5 e16126
[35] Ricci F, Chen W, Aydemir U, et al. 2017 Sci. Data. 4 170085
[36] Fuh H R, Chang C R, Wang Y K, et al. 2016 Sci. Rep. 6 32625
[37] Yuan J, Xie Q, Yu N, et al. 2017 Appl. Surf. Sci. 394 625
[38] Ryabov A, Akhatov I and Zhilyaev P 2020 Sci. Rep. 10 8000
[39] Huang L, Zhong M, Deng H, et al. 2018 Sci. China- Phys. Mech. 62 037311
[1] Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures
Zhiteng Li(李志腾), Yian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓). Chin. Phys. B, 2025, 34(2): 027201.
[2] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[3] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[4] BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2024, 33(4): 047701.
[5] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[6] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
[7] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[8] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[9] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[10] High on-state current p-type tunnel effect transistor based on doping modulation
Jiale Sun(孙佳乐), Yuming Zhang(张玉明), Hongliang Lu(吕红亮), Zhijun Lyu(吕智军),Yi Zhu(朱翊), Yuche Pan(潘禹澈), and Bin Lu(芦宾). Chin. Phys. B, 2023, 32(7): 078504.
[11] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[12] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[13] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[14] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[15] Facile integration of an Al-rich Al1-xInxN photodetector on free-standing GaN by radio-frequency magnetron sputtering
Xinke Liu(刘新科), Zhichen Lin(林之晨), Yuheng Lin(林钰恒), Jianjin Chen(陈建金), Ping Zou(邹苹), Jie Zhou(周杰), Bo Li(李博), Longhai Shen(沈龙海), Deliang Zhu(朱德亮), Qiang Liu(刘强), Wenjie Yu(俞文杰), Xiaohua Li(黎晓华), Hong Gu(顾泓), Xinzhong Wang(王新中), and Shuangwu Huang(黄双武). Chin. Phys. B, 2023, 32(11): 117701.
No Suggested Reading articles found!