INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film |
Bicheng Wang(王必成)1, Ziying Tang(汤梓荧)1, Huying Zheng(郑湖颖)1, Lisheng Wang(王立胜)1, Yaqi Wang(王亚琪)1, Runchen Wang(王润晨)1, Zhiren Qiu(丘志仁)1,†, and Hai Zhu(朱海)1,2,‡ |
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract We successfully fabricate a high performance β-phase (In0.09Ga0.91)2O3 single-crystalline film deep ultraviolet (DUV) solar-blind photodetector. The 2-inches high crystalline quality film is hetero-grown on the sapphire substrates using the plasma-assisted molecular beam epitaxy (PA-MBE). The smooth InGaO single crystalline film is used to construct the solar-blind DUV detector, which utilized an interdigitated Ti/Au electrode with a metal-semiconductor-metal structure. The device exhibits a low dark current of 40 pA (0 V), while its UV photon responsivity exceeds 450 A/W (50 V) at the peak wavelength of 232 nm with illumination intensity of 0.21 mW/cm2 and the UV/VIS rejection ratio (R232 nm/R380 nm) exceeds 4×104. Furthermore, the devices demonstrate ultrafast transient characteristics for DUV signals, with fast-rising and fast-falling times of 80 ns and 420 ns, respectively. This excellent temporal dynamic behavior can be attributed to indium doping can adjust the electronic structure of Ga2O3 alloys to enhance the performance of InGaO solar-blind detectors. Additionally, a two-dimensional DUV scanning image is captured using the InGaO photodetector as a sensor in an imaging system. Our results pave the way for future applications of two-dimensional array DUV photodetectors based on the large-scale InGaO heteroepitaxially grown alloy wide bandgap semiconductor films.
|
Received: 24 April 2023
Revised: 08 May 2023
Accepted manuscript online: 10 May 2023
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
67.30.hr
|
(Films)
|
|
95.85.Mt
|
(Ultraviolet (10-300 nm))
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A2073, 11974433, 91833301, and 11974122). |
Corresponding Authors:
Zhiren Qiu, Hai Zhu
E-mail: stsqzr@mail.sysu.edu.cn;zhuhai5@mail.sysu.edu.cn
|
Cite this article:
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海) High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film 2023 Chin. Phys. B 32 098508
|
[1] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493 [2] Li L, Auer E, Liao M, Fang X, Zhai T, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale 3 1120 [3] Wu Z, Jiao L, Wang X, Guo D, Li W, Li L, Huang F and Tang W 2017 J. Mater. Chem. C 5 8688 [4] Fan P Y, Uday K C, Cao L Y, Afshinmanesh F and Engheta N 2012 Nat. Photonics 6 380 [5] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727 [6] Assefa S, Xia F and Vlasov Y A 2010 Nature 464 80 [7] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q and Long S 2022 Adv. Mater. 34 2106923 [8] Fujita S 2015 JPN J. Appl. Phys. 54 030101 [9] Tsao J Y, Chowdhury S, Hollis M A, et al. 2018 Adv. Electron. Mater. 4 1600501 [10] Xie C, Lu X T, Tong X W, et al. 2019 Adv. Funct. Mater. 29 1806006 [11] Li J Z, Fan Z, Dahal R, et al. 2006 Appl. Phys. Lett. 89 213510 [12] Benmoussa A, Hochedez J F, Dahal R, et al. 2008 Appl. Phys. Lett. 92 022108 [13] BenMoussa A, Soltani A, Schühle U, et al. 2009 Diam. Relat. Mater. 18 860 [14] Liao M, Wang X, Teraji T, Koizumi S and Koide Y 2010 Phys. Rev. B 81 033304 [15] Lu Y J, Lin C N and Shan C X 2018 Adv. Opt. Mater. 6 1800359 [16] Arora K, Goel N, Kumar M and Kumar M 2018 ACS Photonics 5 2391 [17] Oshima T, Okuno T, Arai N, Suzuki N, Ohira S and Fujita S 2008 Appl. Phys. Express 1 011202 [18] Han Z, Liang H, Huo W, et al. 2020 Adv. Opt. Mater. 8 1901833 [19] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504 [20] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z and Lu Y 2019 Adv. Electron. Mater. 5 1900389 [21] Xu Y, Chen X, Zhou D, Ren F, Zhou J, Bai S, Lu H, Gu S, Zhang R and Zheng Y 2019 IEEE Trans. Electron Dev. 66 2276 [22] Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y M and Du G T 2018 RSC Adv. 8 6341 [23] Zhao Y, Zang J H, Yang X, Chen X X, Chen Y C, Li K Y, Dong L and Shan C X 2021 Chin. Phys. B 30 078504 [24] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F and Tang W H 2022 Chin. Phys. B 31 088503 [25] Lambert D J H, Yang B, Li T, et al. 2000 IEEE p. 525 [26] Mazzeo G, Reverchon J L, Conte G, Dussaigne A and Duboz J Y 2008 Solid-state Electron. 52 795 [27] Yue J Y, Ji X Q, Li S, Qi X H, Li P G, Wu Z P and Tang W H 2023 Chin. Phys. B 32 016701 [28] Shiau J S, Brahma S, Liu C P and Huang J L 2016 Thin Solid Films 620 170 [29] Chen W, Xu X, Zhang J, Shi J, Zhang J, Chen W, Cheng Q, Guo Y and Zhang K H L 2022 Adv. Opt. Mater. 10 2102138 [30] Hatipoglu I, Mukhopadhyay P, Alema F, Sakthivel T S, Seal S, Osinsky A and Schoenfeld W V 2020 J. Phys. D: Appl. Phys. 53 454001 [31] Muazzam U U, Raghavan M S, Pratiyush A S, et al. 2020 J. Alloys Compd. 828 154337 [32] Lyle L A M, Okur S, Chava V S N, et al. 2020 J. Electron. Mater. 49 3490 [33] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166 [34] Tippins H H 1965 Phys. Rev. 140 A316 [35] Zhang K H L, Payne D J, Palgrave R G, et al. 2009 Chem. Mater. 21 4353 [36] Vogt P, Brandt O, Riechert H, Lähnemann J and Bierwagen O 2017 Phys. Rew. Lett. 119 196001 [37] Rabbi M H, Lee S, Sasaki D, Kawashima E, Tsuruma Y and Jang J 2022 Small Methods 6 2200668 [38] Swallow J E N, Palgrave R G, Murgatroyd P A E, Regoutz A, Lorenz M, Hassa A, Grundmann M, von Wenckstern H, Varley J B and Veal T D 2021 ACS Appl. Mater. Interfaces 13 2807 [39] Zhang J, Shi J L, Qi D C, Chen L and Zhang K 2020 APL Mater. 8 020906 [40] Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J and Hao Y 2017 Opt. Mater. Express 7 1240 [41] Vogt P and Bierwagen O 2016 Appl. Phys. Lett. 108 072101 [42] Colinge J P and Colinge C A 2005 Physics of semiconductor devices (Berlin: Springer Science & Business Media) [43] Kaur D and Kumar M 2021 Adv. Opt. Mater. 9 2002160 [44] Chang T H, Chang S J, Weng W Y, Chiu C J and Wei C Y 2015 IEEE Photon. Technol. Lett. 27 2083 [45] Mukhopadhyay P and Schoenfeld W V 2019 Appl. Opt. 58 D22 [46] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554 [47] Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K and Lee S W 2017 ACS Photonics 4 2937 [48] Ghose S, Rahman S, Hong L, Rojas-Ramírez J S, Jin H, Park K, Klie R F and Droopad R 2017 J. Appl. Phys. 122 095302 [49] Pratiyush A S, Krishnamoorthy S, Kumar S, Xia Z, Muralidharan R, Rajan S and Nath D N 2018 Jpn. J. Appl. Phys. 57 060313 [50] Mukhopadhyay P and Schoenfeld W 2020 J. Vac. Sci. Technol. A 38 013403 [51] Mahmoud W E 2016 Sol. Energ. Mater. Sol. Cells 152 65 [52] Qiao B, Zhang Z, Xie X, Li B, Li K, Chen X, Zhao H, Liu K, Liu L and Shen D 2019 J. Phys. Chem. C 123 18516 [53] Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lv H and Liu M 2019 IEEE Electron Device Lett. 40 1475 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|