Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098508    DOI: 10.1088/1674-1056/acd3e4
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film

Bicheng Wang(王必成)1, Ziying Tang(汤梓荧)1, Huying Zheng(郑湖颖)1, Lisheng Wang(王立胜)1, Yaqi Wang(王亚琪)1, Runchen Wang(王润晨)1, Zhiren Qiu(丘志仁)1,†, and Hai Zhu(朱海)1,2,‡
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
Abstract  We successfully fabricate a high performance β-phase (In0.09Ga0.91)2O3 single-crystalline film deep ultraviolet (DUV) solar-blind photodetector. The 2-inches high crystalline quality film is hetero-grown on the sapphire substrates using the plasma-assisted molecular beam epitaxy (PA-MBE). The smooth InGaO single crystalline film is used to construct the solar-blind DUV detector, which utilized an interdigitated Ti/Au electrode with a metal-semiconductor-metal structure. The device exhibits a low dark current of 40 pA (0 V), while its UV photon responsivity exceeds 450 A/W (50 V) at the peak wavelength of 232 nm with illumination intensity of 0.21 mW/cm2 and the UV/VIS rejection ratio (R232 nm/R380 nm) exceeds 4×104. Furthermore, the devices demonstrate ultrafast transient characteristics for DUV signals, with fast-rising and fast-falling times of 80 ns and 420 ns, respectively. This excellent temporal dynamic behavior can be attributed to indium doping can adjust the electronic structure of Ga2O3 alloys to enhance the performance of InGaO solar-blind detectors. Additionally, a two-dimensional DUV scanning image is captured using the InGaO photodetector as a sensor in an imaging system. Our results pave the way for future applications of two-dimensional array DUV photodetectors based on the large-scale InGaO heteroepitaxially grown alloy wide bandgap semiconductor films.
Keywords:  deep ultraviolet      film      photodetector      heteroepitaxy  
Received:  24 April 2023      Revised:  08 May 2023      Accepted manuscript online:  10 May 2023
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  67.30.hr (Films)  
  95.85.Mt (Ultraviolet (10-300 nm))  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A2073, 11974433, 91833301, and 11974122).
Corresponding Authors:  Zhiren Qiu, Hai Zhu     E-mail:  stsqzr@mail.sysu.edu.cn;zhuhai5@mail.sysu.edu.cn

Cite this article: 

Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海) High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film 2023 Chin. Phys. B 32 098508

[1] Chen H, Liu K, Hu L, Al-Ghamdi A A and Fang X 2015 Mater. Today 18 493
[2] Li L, Auer E, Liao M, Fang X, Zhai T, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale 3 1120
[3] Wu Z, Jiao L, Wang X, Guo D, Li W, Li L, Huang F and Tang W 2017 J. Mater. Chem. C 5 8688
[4] Fan P Y, Uday K C, Cao L Y, Afshinmanesh F and Engheta N 2012 Nat. Photonics 6 380
[5] Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L and Shan C X 2018 J. Mater. Chem. C 6 5727
[6] Assefa S, Xia F and Vlasov Y A 2010 Nature 464 80
[7] Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q and Long S 2022 Adv. Mater. 34 2106923
[8] Fujita S 2015 JPN J. Appl. Phys. 54 030101
[9] Tsao J Y, Chowdhury S, Hollis M A, et al. 2018 Adv. Electron. Mater. 4 1600501
[10] Xie C, Lu X T, Tong X W, et al. 2019 Adv. Funct. Mater. 29 1806006
[11] Li J Z, Fan Z, Dahal R, et al. 2006 Appl. Phys. Lett. 89 213510
[12] Benmoussa A, Hochedez J F, Dahal R, et al. 2008 Appl. Phys. Lett. 92 022108
[13] BenMoussa A, Soltani A, Schühle U, et al. 2009 Diam. Relat. Mater. 18 860
[14] Liao M, Wang X, Teraji T, Koizumi S and Koide Y 2010 Phys. Rev. B 81 033304
[15] Lu Y J, Lin C N and Shan C X 2018 Adv. Opt. Mater. 6 1800359
[16] Arora K, Goel N, Kumar M and Kumar M 2018 ACS Photonics 5 2391
[17] Oshima T, Okuno T, Arai N, Suzuki N, Ohira S and Fujita S 2008 Appl. Phys. Express 1 011202
[18] Han Z, Liang H, Huo W, et al. 2020 Adv. Opt. Mater. 8 1901833
[19] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504
[20] Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z and Lu Y 2019 Adv. Electron. Mater. 5 1900389
[21] Xu Y, Chen X, Zhou D, Ren F, Zhou J, Bai S, Lu H, Gu S, Zhang R and Zheng Y 2019 IEEE Trans. Electron Dev. 66 2276
[22] Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y M and Du G T 2018 RSC Adv. 8 6341
[23] Zhao Y, Zang J H, Yang X, Chen X X, Chen Y C, Li K Y, Dong L and Shan C X 2021 Chin. Phys. B 30 078504
[24] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F and Tang W H 2022 Chin. Phys. B 31 088503
[25] Lambert D J H, Yang B, Li T, et al. 2000 IEEE p. 525
[26] Mazzeo G, Reverchon J L, Conte G, Dussaigne A and Duboz J Y 2008 Solid-state Electron. 52 795
[27] Yue J Y, Ji X Q, Li S, Qi X H, Li P G, Wu Z P and Tang W H 2023 Chin. Phys. B 32 016701
[28] Shiau J S, Brahma S, Liu C P and Huang J L 2016 Thin Solid Films 620 170
[29] Chen W, Xu X, Zhang J, Shi J, Zhang J, Chen W, Cheng Q, Guo Y and Zhang K H L 2022 Adv. Opt. Mater. 10 2102138
[30] Hatipoglu I, Mukhopadhyay P, Alema F, Sakthivel T S, Seal S, Osinsky A and Schoenfeld W V 2020 J. Phys. D: Appl. Phys. 53 454001
[31] Muazzam U U, Raghavan M S, Pratiyush A S, et al. 2020 J. Alloys Compd. 828 154337
[32] Lyle L A M, Okur S, Chava V S N, et al. 2020 J. Electron. Mater. 49 3490
[33] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
[34] Tippins H H 1965 Phys. Rev. 140 A316
[35] Zhang K H L, Payne D J, Palgrave R G, et al. 2009 Chem. Mater. 21 4353
[36] Vogt P, Brandt O, Riechert H, Lähnemann J and Bierwagen O 2017 Phys. Rew. Lett. 119 196001
[37] Rabbi M H, Lee S, Sasaki D, Kawashima E, Tsuruma Y and Jang J 2022 Small Methods 6 2200668
[38] Swallow J E N, Palgrave R G, Murgatroyd P A E, Regoutz A, Lorenz M, Hassa A, Grundmann M, von Wenckstern H, Varley J B and Veal T D 2021 ACS Appl. Mater. Interfaces 13 2807
[39] Zhang J, Shi J L, Qi D C, Chen L and Zhang K 2020 APL Mater. 8 020906
[40] Feng Q, Li X, Han G, Huang L, Li F, Tang W, Zhang J and Hao Y 2017 Opt. Mater. Express 7 1240
[41] Vogt P and Bierwagen O 2016 Appl. Phys. Lett. 108 072101
[42] Colinge J P and Colinge C A 2005 Physics of semiconductor devices (Berlin: Springer Science & Business Media)
[43] Kaur D and Kumar M 2021 Adv. Opt. Mater. 9 2002160
[44] Chang T H, Chang S J, Weng W Y, Chiu C J and Wei C Y 2015 IEEE Photon. Technol. Lett. 27 2083
[45] Mukhopadhyay P and Schoenfeld W V 2019 Appl. Opt. 58 D22
[46] Hu G C, Shan C X, Zhang N, Jiang M M, Wang S P and Shen D Z 2015 Opt. Express 23 13554
[47] Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K and Lee S W 2017 ACS Photonics 4 2937
[48] Ghose S, Rahman S, Hong L, Rojas-Ramírez J S, Jin H, Park K, Klie R F and Droopad R 2017 J. Appl. Phys. 122 095302
[49] Pratiyush A S, Krishnamoorthy S, Kumar S, Xia Z, Muralidharan R, Rajan S and Nath D N 2018 Jpn. J. Appl. Phys. 57 060313
[50] Mukhopadhyay P and Schoenfeld W 2020 J. Vac. Sci. Technol. A 38 013403
[51] Mahmoud W E 2016 Sol. Energ. Mater. Sol. Cells 152 65
[52] Qiao B, Zhang Z, Xie X, Li B, Li K, Chen X, Zhao H, Liu K, Liu L and Shen D 2019 J. Phys. Chem. C 123 18516
[53] Qin Y, Sun H, Long S, Tompa G S, Salagaj T, Dong H, He Q, Jian G, Liu Q, Lv H and Liu M 2019 IEEE Electron Device Lett. 40 1475
[1] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[2] Multi-band analysis on physical properties of superconducting FeSe films
Jian-Tao Che(车剑韬) and Chen-Xiao Ye(叶晨骁). Chin. Phys. B, 2023, 32(9): 097401.
[3] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[4] Glancing incidence x-ray fluorescence spectrometry based on a single-bounce parabolic capillary
Shangkun Shao(邵尚坤), Huiquan Li(李惠泉), Tianyu Yuan(袁天语), Xuepeng Sun(孙学鹏), Lu Hua(华路), Zhiguo Liu(刘志国), and Tianxi Sun(孙天希). Chin. Phys. B, 2023, 32(8): 080702.
[5] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[6] The growth and expansive applications of amorphous Ga2O3
Zhao-Ying Xi(奚昭颖), Li-Li Yang(杨莉莉), Lin-Cong Shu(舒林聪), Mao-Lin Zhang(张茂林), Shan Li(李山), Li Shi(史丽), Zeng Liu(刘增), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(8): 088502.
[7] Asymmetric magnetoimpedance effect and dipolar interactions of FINEMET/SiO2/FePd composite ribbons
Yong-Bin Guo(郭永斌), Dao Wang(王岛), Zhong-Min Wang(王忠民), Lei Ma(马垒), and Zhen-Jie Zhao(赵振杰). Chin. Phys. B, 2023, 32(7): 070703.
[8] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[9] Effects of atomic corrugations on electronic structures in Pb1-xBix thin films
Pengju Li(李鹏举), Kun Xie(谢鹍), Yumin Xia(夏玉敏), Desheng Cai(蔡德胜), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2023, 32(6): 066101.
[10] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[11] Rayleigh-Taylor instability of viscoelastic self-rewetting film flowing down a temperature-controlled inclined substrate
Siyi An(安思亦) and Yongjun Jian(菅永军). Chin. Phys. B, 2023, 32(6): 064701.
[12] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[13] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[14] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[15] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
No Suggested Reading articles found!