Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047701    DOI: 10.1088/1674-1056/ad2607
RAPID COMMUNICATION Prev   Next  

BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization

Wushuang Han(韩无双)1,2, Kewei Liu(刘可为)1,2,†, Jialin Yang(杨佳霖)1,2, Yongxue Zhu(朱勇学)1,2, Zhen Cheng(程祯)1,2, Xing Chen(陈星)1,2, Binghui Li(李炳辉)1,2, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect. In this work, a BaTiO3/p-GaN/Au hybrid heterojunction—Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property. At 0 V bias, the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO3, which allows the performance of photodetectors to be controlled by the ferroelectric effect. Meanwhile, a relatively large responsivity and a fast response speed can be also observed. In particular, when the depolarization field of BaTiO3 is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction (up polarized state), the photodetector exhibits a high responsivity of 18 mA/W at 360 nm, and a fast response speed of < 40 ms at 0 V. These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.
Keywords:  ferroelectric effect      bipolar      self-driven      photodetector  
Received:  03 January 2024      Revised:  29 January 2024      Accepted manuscript online:  05 February 2024
PACS:  77.55.fe (BaTiO3-based films)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  85.60.-q (Optoelectronic devices)  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902, 12204474, 12304111, and 12304112), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020225), Jilin Province Science Fund (Grant Nos. 20220101053JC and 20210101145JC), and Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project (Grant No. 20220508153RC).
Corresponding Authors:  Kewei Liu     E-mail:  liukw@ciomp.ac.cn

Cite this article: 

Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振) BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization 2024 Chin. Phys. B 33 047701

[1] Hou H Y, Tian S, Chen J D, Ling H H, Ren H, Zhang Y F, Ge H R, Chen W S, Li Y Q, Mao H Y, Ishii H and Tang J X 2023 Advanced Optical Materials
[2] Kumar M, Park J Y and Seo H 2021 ACS Applied Materials & Interfaces 13 12241
[3] Gao L, Chen C, Zeng K, Ge C, Yang D, Song H S and Tang J 2016 Light-Science & Applications 5 e16126
[4] Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D and Shen L 2020 Light-Science & Applications 9 31
[5] Yang J, Liu K, Chen X and Shen D 2022 Progress in Quantum Electronics 83 100397
[6] Li K, Xu L, Lu Q D and Hu P 2023 Chin. Phys. B 32 118503
[7] Yang L L, Peng Y S, Liu Z, Zhang M L, Guo Y F, Yang Y and Tang W H 2023 Chin. Phys. B 32 047301
[8] Qi J, Ma N, Ma X C, Adelung R and Yang Y 2018 ACS Applied Materials & Interfaces 10 13712
[9] Li Z, Zhao Y, Li W L, Peng Y Z, Zhao W Y, Wang Z, Shi L and Fei W D 2022 Journal of Materials Chemistry A 10 8772
[10] Ma N and Yang Y 2017 Nano Energy 40 352
[11] Song K, Ma N and Yang Y 2017 Advanced Materials Technologies 2 1700221
[12] Chen J, Priya A S, You D, Pei W J, Zhang Q F, Lu Y M, Li M K, Guo J M and He Y B 2020 Sensors and Actuators A-Physical 315 112267
[13] Gan B K, Yao K, Lai S C, Goh P C and Chen Y F 2011 IEEE Electron Device Lett. 32 665
[14] Zhao R, Ma N, Song K and Yang Y 2020 Adv. Funct. Mater. 30 1906232
[15] Qi J, Ma N and Yang Y 2018 Advanced Materials Interfaces 5 142901
[16] Song K, Ma N, Mishra Y K, Adelung R and Yang Y 2019 Advanced Electronic Materials 5 1800413
[17] Ma N, Zhang K W and Yang Y 2017 Adv. Mater. 29 10
[18] Chen J, You D, Zhang Y, Zhang T, Yao C, Zhang Q F, Li M K, Lu Y M and He Y B 2020 ACS Applied Materials & Interfaces 12 53957
[19] Ashtar M, Marwat M A, Li Z T, Yang Y and Cao D W 2023 Journal of Luminescence 260 119855
[20] Wu G J, Zhang X M, Feng G D, Wang J L, Zhou K J, Zeng J H, Dong D N, Zhu F D, Yang C K, Zhao X M, Gong D N, Zhang M R, Tian B B, Duan C A, Liu Q, Chu J H and Liu M 2023 Nat. Mater.
[21] Wu G J, Tian B B, Liu L, Lv W, Wu S, Wang X D, Chen Y, Li J Y, Wang Z, Wu S Q, Shen H, Lin T, Zhou P, Liu Q, Duan C G, Zhang S T, Meng X J, Wu S W, Hu W D, Wang X R, Chu J H and Wang J L 2020 Nat. Electron. 3 43
[22] Wu G J, Wang X D, Chen Y, Wu S Q, Wu B M, Jiang Y Y, Shen H, Lin T, Liu Q, Wang X R, Zhou P, Zhang S T, Hu W D, Meng X J, Chu J H and Wang J L 2020 Adv. Mater. 32 1907937
[23] Chen S S, Zhang X H, Wang G C, Chen S, Ma H Q, Sun T Y, Man B Y and Yang C 2023 Chin. Phys. B 32 127301
[24] Ou Y J, Sun J, Li Y M and Jiang A Q 2023 Chin. Phys. Lett. 40 038501
[25] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B and Yang G Z 2017 Appl. Phys. Lett. 110 142901
[26] Li C X, Chen C, Zhao L and Ma N 2023 ACS Applied Materials & Interfaces 15 23402
[27] Xing J, Guo E J, Dong J J, Hao H Y, Zheng Z Y and Zhao C C 2015 Appl. Phys. Lett. 106 033504
[28] Kim W, Kim H, Yoo T J, Lee J Y, Jo J Y, Lee B H, Sasikala A A, Jung G Y and Pak Y 2022 Nat. Commun. 13 720
[29] Li M, Sun H, Ruan Y, Cao C, Zhou P, Qi Y and Zhang T 2023 Applied Surface Science 618 156665
[30] Yu P, Wang W, Zheng T, Wan X and Jiang Y 2023 ACS Applied Materials & Interfaces 15 46031
[31] Wang S, Nan F, Zhou Y, Zheng F G, Weng Y Y, You L and Fang L 2020 J. Appl. Phys. 128 154101
[32] Zhang Y, Chen J, Zhang Q, Lu Y, Huang H and He Y 2022 J. Am. Ceram. Soc. 105 392
[33] Chen J, Wang Z H, He H F, Mao J X, Zhang Y, Zhang Q F, Li M K, Lu Y M and He Y B 2021 Advanced Electronic Materials 7 2100717
[34] Gao S Y, Xu J P, Shi S B, Chen J, Xu J H, Kong L N, Zhang X S and Li L 2023 J. Mater. Chem. C 11 9201
[35] Hu T G, Zhao L X, Wang Y J, Lin H L, Xie S H, Hu Y, Liu C, Zhu W K, Wei Z M, Liu J and Wang K Y 2023 ACS Nano 17 8411
[36] Liu C, Li X D, Hu T G, Zhu W K, Yan F G, Wu T S, Wang K Y and Zhao L X 2021 Nanoscale 13 17512
[37] Li J, Xi X, Lin S, Ma Z H, Li X D and Zhao L X 2020 ACS Applied Materials & Interfaces 12 11965
[38] Han W S, Liu K W, Yang J L, Chen X, Ai Q, Zhu Y X, Cheng Z, Li B H, Liu L and Shen D Z 2023 Applied Surface Science 615 156371
[39] Wu C I and Kahn A 2000 Applied Surface Science 162 250
[40] Zhou X, Xu J P, Shi S B, Chen J, Xu J H, Kong L N, Zhang X S and Li L 2023 Applied Surface Science 623 157032
[41] Park I H, Kwon K C, Zhu Z Y, Wu X, Li R L, Xu Q H and Loh K P 2020 J. Am. Chem. Soc. 142 18592
[1] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[2] Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2024, 33(1): 016104.
[3] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
[4] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[5] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[6] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[7] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[8] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[9] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
[10] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[11] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[12] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[13] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[14] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[15] Two-dimensional transition metal halide PdX2(X= F, Cl, Br, I): A promising candidate of bipolar magnetic semiconductors
Miao-Miao Chen(陈苗苗), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(12): 127103.
No Suggested Reading articles found!