INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition |
Shao-Qing Wang(王少青)1, Ni-Ni Cheng(程妮妮)1, Hai-An Wang(王海安)1, Yi-Fan Jia(贾一凡)1, Qin Lu(陆芹)1, Jing Ning(宁静)2, Yue Hao(郝跃)2, Xiang-Tai Liu(刘祥泰)1,†, and Hai-Feng Chen(陈海峰)1,‡ |
1 The Key Laboratory of Advanced Semiconductor Devices and Materials, Xi'an University of Posts&Telecommunications, Xi'an 710121, China; 2 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, China |
|
|
Abstract The $\beta $-Ga$_{2}$O$_{3}$ films with different thicknesses are prepared by an atomic layer deposition system. The influence of film thickness on the crystal quality is obvious, indicating that the thicker films perform better crystal quality, which is verified from x-ray diffraction (XRD) and scanning electron microscope (SEM) results. The Ga$_{2}$O$_{3}$-based solar blind photodetectors with different thicknesses are fabricated and studied. The experimental results show that the responsivity of the photodetectors increases exponentially with the increase of the film thickness. The photodetectors with inter-fingered structure based on 900 growth cycles $\beta $-Ga$_{2}$O$_{3}$ active layers (corresponding film thickness of 58 nm) exhibit the best performances including a low dark current of 134 fA, photo-to-dark current ratio of 1.5$\times10^{7}$, photoresponsivity of 1.56 A/W, detectivity of 2.77$\times10^{14}$ Jones, and external quantum efficiency of 764.49% at a bias voltage of 10 V under 254-nm DUV illumination. The photoresponse rejection ratio ($R_{254}/R_{365}$) is up to $1.86\times 10^{5}$. In addition, we find that the photoelectric characteristics also depend on the finger spacing of the MSM structure. As the finger spacing decreases from 50 μm to 10 μm, the photoresponsivity, detectivity, and external quantum efficiency increase significantly.
|
Received: 15 July 2022
Revised: 24 August 2022
Accepted manuscript online: 26 August 2022
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
73.63.Bd
|
(Nanocrystalline materials)
|
|
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-701) and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 21JK0919). |
Corresponding Authors:
Xiang-Tai Liu, Hai-Feng Chen
E-mail: liuxiangtai@xupt.edu.cn;chenhaifeng@xupt.edu.cn
|
Cite this article:
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰) Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition 2023 Chin. Phys. B 32 048502
|
[1] Pearton S J, Yang J C, Cary IV P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [2] Baldini M, Galazka Z and Wagner G 2018 Mater. Sci. Semicond. Proc. 78 132 [3] Hao W B, He Q M, Zhou K, Xu G W, Xiong W H, Zhou X Z, Jian G Z, Chen C, Zhao X L and Long S B 2021 Appl. Phys. Lett. 118 043501 [4] Zhong M Z, Wei Z M, Meng X Q, Wu F M and Li J B 2015 J. Alloys Compd. 619 572 [5] Ogita M, Higo K, Nakanishi Y and Hatanaka Y 2001 Appl. Surf. Sci. 175 721 [6] Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K and Tanaka I 2007 J. Phys.: Condens. Matter 19 346211 [7] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L and Luo L B 2019 Adv. Fuct. Mater. 29 1806006 [8] Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K and Lee S W 2017 ACS Photon. 4 2937 [9] Feng Z X, Anhar Uddin Bhuiyan A F M, Karim M R and Zhao H P 2019 Appl. Phys. Lett. 114 250601 [10] Yu F P, Ou S L and Wu D S 2015 Opt. Mater. Express 5 1240 [11] Sasaki K, Kuramata A, Masui T, Villora E G, Shimamura K and Yamakoshi S 2012 Appl. Phys. Express 5 035502 [12] Cheng Y L, Xu Y, Li Z, Zhang J Q, Chen D Z, Feng Q, Xu S R, Zhou H, Zhang J C, Hao Y and Zhang C F 2022 J. Alloys Compd. 831 154776 [13] Saikumar A K, Nehate S D and Sundaram K B 2019 ECS J. Solid Sci. Technol. 8 Q3064 [14] Shen H, Baskaran K, Yin Y, Tian K, Duan L B, Zhao X R and Tiwari A 2020 J. Alloys Compd. 822 153419 [15] Zhang X Y, Wang L, Wang X D, Chen Y, Shao Q Q, Wu G J, Wang X Y, Lin T, Shen H, Wang J L, Meng X J and Chu J H 2020 Opt. Express 28 4169 [16] An Y H, Zhi Y S, Cui W, Zhao X L, Wu Z P, Guo D Y, Li P G and Tang W H 2017 J. Nanosci. Nanotechnol. 17 9091 [17] Li X H, Zhang M, Yang J, Xin S, Gao Y, Li Y Z, Li S Y and Wang C J 2022 Acta Phys. Sin. 71 048501 (in Chinese) [18] Sun R, Zhang H Y, Wang G G, Han J C, Wang X Z, Cui L, Kuang X P, Zhu C and Jin L 2014 Superlattices Microst. 65 146 [19] Jubu P R, Yam F K, Igba V M and Beh K P 2020 J. Solid State Chem. 290 121576 [20] An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H and Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111 [21] Liu Z, Zhi Y S, Li S, Liu Y Y, Tang X, Yan Z Y, Li P G, Li X H, Guo D Y, Wu Z P and Tang W H 2019 J. Phys. D: Appl. Phys. 53 085105 [22] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y and Li H L 2021 Opt. Mater. 112 110808 [23] Li L, Auer E, Liao M Y, Fang X S, Zhai T Y, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale 3 1120 [24] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L and Li L H 2014 Appl. Phys. Lett. 105 023507 [25] Liu X Z, Liu Q, Zhao B W, Ren Y X, Tao B W and Zhang W L 2020 Vaccum 178 109435 [26] Ma M H, Zhang D, Li Y Q, Lin R C, Zheng W and Huang F 2019 ACS Appl. Electron. Mater. 1 1653 [27] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136 [28] Dan Y P, Seo K, Takei K, Meza J H, Javey A and Crozier K B 2011 Nano Lett. 11 2527 [29] Liang Z M, Zeng P Y, Liu P Y, Zhao C X, Xie W G and Mai W J 2016 ACS Appl. Mater. Inter. 8 19158 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|