Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048502    DOI: 10.1088/1674-1056/ac8ce9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition

Shao-Qing Wang(王少青)1, Ni-Ni Cheng(程妮妮)1, Hai-An Wang(王海安)1, Yi-Fan Jia(贾一凡)1, Qin Lu(陆芹)1, Jing Ning(宁静)2, Yue Hao(郝跃)2, Xiang-Tai Liu(刘祥泰)1,†, and Hai-Feng Chen(陈海峰)1,‡
1 The Key Laboratory of Advanced Semiconductor Devices and Materials, Xi'an University of Posts&Telecommunications, Xi'an 710121, China;
2 The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, China
Abstract  The $\beta $-Ga$_{2}$O$_{3}$ films with different thicknesses are prepared by an atomic layer deposition system. The influence of film thickness on the crystal quality is obvious, indicating that the thicker films perform better crystal quality, which is verified from x-ray diffraction (XRD) and scanning electron microscope (SEM) results. The Ga$_{2}$O$_{3}$-based solar blind photodetectors with different thicknesses are fabricated and studied. The experimental results show that the responsivity of the photodetectors increases exponentially with the increase of the film thickness. The photodetectors with inter-fingered structure based on 900 growth cycles $\beta $-Ga$_{2}$O$_{3}$ active layers (corresponding film thickness of 58 nm) exhibit the best performances including a low dark current of 134 fA, photo-to-dark current ratio of 1.5$\times10^{7}$, photoresponsivity of 1.56 A/W, detectivity of 2.77$\times10^{14}$ Jones, and external quantum efficiency of 764.49% at a bias voltage of 10 V under 254-nm DUV illumination. The photoresponse rejection ratio ($R_{254}/R_{365}$) is up to $1.86\times 10^{5}$. In addition, we find that the photoelectric characteristics also depend on the finger spacing of the MSM structure. As the finger spacing decreases from 50 μm to 10 μm, the photoresponsivity, detectivity, and external quantum efficiency increase significantly.
Keywords:  β-Ga2O3      film thickness      solar blind photodetectors      photoelectric response  
Received:  15 July 2022      Revised:  24 August 2022      Accepted manuscript online:  26 August 2022
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  73.63.Bd (Nanocrystalline materials)  
Fund: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-701) and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 21JK0919).
Corresponding Authors:  Xiang-Tai Liu, Hai-Feng Chen     E-mail:  liuxiangtai@xupt.edu.cn;chenhaifeng@xupt.edu.cn

Cite this article: 

Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰) Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition 2023 Chin. Phys. B 32 048502

[1] Pearton S J, Yang J C, Cary IV P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[2] Baldini M, Galazka Z and Wagner G 2018 Mater. Sci. Semicond. Proc. 78 132
[3] Hao W B, He Q M, Zhou K, Xu G W, Xiong W H, Zhou X Z, Jian G Z, Chen C, Zhao X L and Long S B 2021 Appl. Phys. Lett. 118 043501
[4] Zhong M Z, Wei Z M, Meng X Q, Wu F M and Li J B 2015 J. Alloys Compd. 619 572
[5] Ogita M, Higo K, Nakanishi Y and Hatanaka Y 2001 Appl. Surf. Sci. 175 721
[6] Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K and Tanaka I 2007 J. Phys.: Condens. Matter 19 346211
[7] Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L and Luo L B 2019 Adv. Fuct. Mater. 29 1806006
[8] Lee S H, Kim S B, Moon Y J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S K and Lee S W 2017 ACS Photon. 4 2937
[9] Feng Z X, Anhar Uddin Bhuiyan A F M, Karim M R and Zhao H P 2019 Appl. Phys. Lett. 114 250601
[10] Yu F P, Ou S L and Wu D S 2015 Opt. Mater. Express 5 1240
[11] Sasaki K, Kuramata A, Masui T, Villora E G, Shimamura K and Yamakoshi S 2012 Appl. Phys. Express 5 035502
[12] Cheng Y L, Xu Y, Li Z, Zhang J Q, Chen D Z, Feng Q, Xu S R, Zhou H, Zhang J C, Hao Y and Zhang C F 2022 J. Alloys Compd. 831 154776
[13] Saikumar A K, Nehate S D and Sundaram K B 2019 ECS J. Solid Sci. Technol. 8 Q3064
[14] Shen H, Baskaran K, Yin Y, Tian K, Duan L B, Zhao X R and Tiwari A 2020 J. Alloys Compd. 822 153419
[15] Zhang X Y, Wang L, Wang X D, Chen Y, Shao Q Q, Wu G J, Wang X Y, Lin T, Shen H, Wang J L, Meng X J and Chu J H 2020 Opt. Express 28 4169
[16] An Y H, Zhi Y S, Cui W, Zhao X L, Wu Z P, Guo D Y, Li P G and Tang W H 2017 J. Nanosci. Nanotechnol. 17 9091
[17] Li X H, Zhang M, Yang J, Xin S, Gao Y, Li Y Z, Li S Y and Wang C J 2022 Acta Phys. Sin. 71 048501 (in Chinese)
[18] Sun R, Zhang H Y, Wang G G, Han J C, Wang X Z, Cui L, Kuang X P, Zhu C and Jin L 2014 Superlattices Microst. 65 146
[19] Jubu P R, Yam F K, Igba V M and Beh K P 2020 J. Solid State Chem. 290 121576
[20] An Y H, Guo D Y, Li S Y, Wu Z P, Huang Y Q, Li P G, Li L H and Tang W H 2016 J. Phys. D: Appl. Phys. 49 285111
[21] Liu Z, Zhi Y S, Li S, Liu Y Y, Tang X, Yan Z Y, Li P G, Li X H, Guo D Y, Wu Z P and Tang W H 2019 J. Phys. D: Appl. Phys. 53 085105
[22] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y and Li H L 2021 Opt. Mater. 112 110808
[23] Li L, Auer E, Liao M Y, Fang X S, Zhai T Y, Gautam U K, Lugstein A, Koide Y, Bando Y and Golberg D 2011 Nanoscale 3 1120
[24] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L and Li L H 2014 Appl. Phys. Lett. 105 023507
[25] Liu X Z, Liu Q, Zhao B W, Ren Y X, Tao B W and Zhang W L 2020 Vaccum 178 109435
[26] Ma M H, Zhang D, Li Y Q, Lin R C, Zheng W and Huang F 2019 ACS Appl. Electron. Mater. 1 1653
[27] Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M and Tang W H 2016 J. Alloys Compd. 660 136
[28] Dan Y P, Seo K, Takei K, Meza J H, Javey A and Crozier K B 2011 Nano Lett. 11 2527
[29] Liang Z M, Zeng P Y, Liu P Y, Zhao C X, Xie W G and Mai W J 2016 ACS Appl. Mater. Inter. 8 19158
[1] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[2] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[5] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[6] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[7] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[8] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[9] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[10] Effect of substrate curvature on thickness distribution of polydimethylsiloxane thin film in spin coating process
Ying Yan(闫英), Ping Zhou(周平), Shang-Xiong Zhang(张尚雄), Xiao-Guang Guo(郭晓光), Dong-Ming Guo(郭东明). Chin. Phys. B, 2018, 27(6): 068104.
No Suggested Reading articles found!