Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 054701    DOI: 10.1088/1674-1056/adbd24
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Vibration modes of a bubble close to a boundary

Jin-Ze Liu(刘金泽) and Wen-Shan Duan(段文山)†
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  Using the recently proposed bubble equation, we study the vibration characteristics of a bubble close to a solid boundary. The results indicate that a rigid boundary has an important effect on large-amplitude bubble vibration. Whether the bubble vibration is stable or unstable strongly depends on the distance between the initial bubble center and the solid boundary. Furthermore, it also depends on both the amplitude and the frequency of the external perturbation. It is found that the smaller the distance between the initial bubble center and the solid boundary, the larger the initial bubble radius and the larger both the amplitude and frequency of the external perturbation, the more easily the bubble vibration becomes unstable. It is shown that this unstable bubble vibration is possibly related to the production of a reentrant microjet for the bubble, which suggests a potential method for estimating bubble size and the distance between the bubble center and the solid boundary by exerting an external perturbation with controllable amplitude and frequency on the liquid. Furthermore, the dependence of the natural frequency of the bubble on the external pressure for small-amplitude vibration can reveal the bubble radius and the distance between the bubble center and the solid boundary. In addition, the vibration characteristics of a bubble close to a solid boundary under a periodic external perturbation are revealed. Several bubble vibration modes are identified; the strongest vibration modes are those with the natural frequency and the external vibration frequency.
Keywords:  bubble dynamics      spectral analysis  
Received:  27 November 2024      Revised:  22 January 2025      Accepted manuscript online:  06 March 2025
PACS:  47.55.dd (Bubble dynamics)  
  43.25.+y (Nonlinear acoustics)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12275223).
Corresponding Authors:  Wen-Shan Duan     E-mail:  duanws@nwnu.edu.cn

Cite this article: 

Jin-Ze Liu(刘金泽) and Wen-Shan Duan(段文山) Vibration modes of a bubble close to a boundary 2025 Chin. Phys. B 34 054701

[1] Plesset M S and Prosperetti A 1977 Ann. Rev. Fluid Mech. 9 145
[2] PIesset M S 1949 J. Appl. Mech. 16 277
[3] Brennen C 1973 ASME. J. Fluids Eng. 95 533
[4] Minnaert M 1933 Philos. Mag. 16 235
[5] Plesset M S and Hsieh D Y 1960 Phys. Fluids 3 882
[6] Chapman R B and Plesset M S 1971 J. Basic Eng. 93 373
[7] Devin C 1959 J. Acoust. Soc. Am. 31 1654
[8] Brennen C E 2013 Cavitation and Bubble Dynamics (Cambridge University Press)
[9] Cole R H and Weller R 1948 Phys. Today 1 35
[10] Keller J B and Kolodner I I 1956 J. Appl. Phy. 27 1152
[11] Keller J B and Miksis M 1980 J. Acouet. Soc. Am. 68 628
[12] Prosperetti A and Lezzi A 1986 J. Fluid Mech. 168 457
[13] Trilling L 1952 J. Appl. Phys. 23 14
[14] Magaletti F, Marino L and Casciola C M 2015 Phys. Rev. Lett. 114 064501
[15] Koukouvinis P, Gavaises M, Supponen O and Farhat M 2016 Phys. Fluids 28 052103
[16] Shaw S J and Spelt P D M 2010 J. Fluid Mech. 646 363
[17] Brujan E A, Keen G S, Vogel A and Blake J R 2002 Phys. Fluids 14 85
[18] Xu L, Yao X R and Shen Y 2024 Chin. Phys. B 33 044702
[19] Karri B, Avila S R G, Loke Y C, O’Shea S J, Klaseboer E, Khoo B C and Ohl C D 2012 Phys. Rev. E 85 015303
[20] Wang X L, Wang Y, Liu H L, Xiao Y D, Jiang L L and Li M 2023 Int. J. Heat Mass Tran. 201 123591
[21] Zhao X T, Shen X, Geng L L, Zhang D S and Van Esch B P M 2023 Phys. Fluids 35 115135
[22] Zhu C S, Zhao B R, Lei Y and Guo X T 2023 Chin. Phys. B 32 044702
[23] Lindau O and Lauterborn W 2003 J. Fluid Mech. 479 327
[24] Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N and Farhat M 2016 J. Fluid Mech. 802 263
[25] Hsiao C T, Jayaprakash A, Kapahi A, Choi J K and Chahine G L 2014 J. Fluid Mech. 755 142
[26] Appel J, Koch P, Mettin R, Krefting D and Lauterborn W 2004 Ultrason. Sonochem. 11 39
[27] Luo X W, Ji B and Tsujimoto Y 2016 J. Hydrodyn. 28 335
[28] Philipp A and Lauterborn W 1998 J. Fluid Mech. 361 75
[29] Luo J, Xu W L, Deng J, Zhai Y W and Zhang Q 2018 Water 10 1262
[30] Sagar H J and Moctar O E 2020 J. Fluids Struct. 92 102799
[31] Zhu S, Cocks F H, Preminger GMand Zhong P 2002 Ultrasound Med. Biol. 28 661
[32] Brujan E A, Ikeda T and Matsumoto Y 2004 Phys. Fluids 16 2402
[33] Ni B Y, Zhang A M and Wu G X 2015 J. Fluid Eng. 137 031206
[34] Lauer E, Hu X Y, Hickel S and Adams N A 2012 Comput. Fluids 69 1
[35] Li S M, Zhang A M, Wang Q X and Zhang S 2019 Phys. Fluids 31 107105
[36] Koch M, Lechner C, Reuter F, Köhler K, Mettin R and Lauterborn W 2015 Comput. Fluids 126 71
[37] Sagar H J and Moctor O E 2020 J. Fluids Struct. 92 102799
[38] Oguchi K, Enoki M and Hirata N 2015 Mater. Trans. 56 534
[39] Chen T N, Guo Z N, Zeng BW, Yin S H, Deng Y and Li H H 2017 Int. Adv. Manuf. Technol. 93 3275
[40] Zhang Y N, Qiu X, Zhang X Q, Tao N N and Zhang Y N 2020 Ultrason. Sonochem. 67 105157
[41] Wang C, Rallabandi B and Hilgenfeldt S 2013 Phys. Fluids 25 02200
[42] Shaw S J, Jin Y H, Schiffers W P and Emmony D C 1996 J. Acoust. Soc. Am. 99 2811
[43] Vesipa R, Paissoni E, Manes C and Ridolfi L 2021 Phys. Rev. E 103 023108
[44] Han R, Tao L B, Zhang A M and Li S 2019 Ocean Eng. 186 106096
[45] Cui P, Zhang A M, Wang S P and Liu Y L 2020 J. Fluid Mech. 897 A25
[46] Li X F, Duan Y X, Zhang Y N, Tang N N and Zhang Y N 2019 Symmetry 11 1051
[47] Colonius T, Hagmeijer R, Ando K and Brennen C E 2008 Phys. Fluids 20 040902
[48] Brujan E A, Ikeda T, Yoshinaka K and Matsumoto Y 2011 Ultrason. Sonochem. 18 59
[49] Zhan S P, Duan H T, Pan L, Tu J S, Jia D, Yang T and Li J 2021 Phys. Chem. Chem. Phys. 23 8446
[50] Trummler T, Bryngelson S H, Schmidmayer K, Schmidt S J, Colonius T and Adams N A 2020 J. Fluid Mech. 899 A16
[51] Tang H, Liu Y L, Cui P and Zhang A M 2020 J. Hydrodyn. 32 1029
[52] Zhao R, Xu R Q, Shen Z H, Lu J and Ni X W 2007 Opt. Laser Technol. 39 968
[53] Cui P, Zhang A M and Wang S P 2021 Ocean Eng. 234 109175
[54] Cui J, Zhou T R, Huang X and Li Z C 2021 Ultrason. Sonochem. 75 105587
[55] Chahine G L, Kapahi A, Choi J K and Hsiao C T 2016 Ultrason. Sonochem. 29 528
[56] Ohl C D, Arora M, Dijkink R, Janve V and Lohse D 2006 Appl. Phys. Lett. 89 074102
[57] Hung C F and Hwangfu J J 2010 J. Fluid Mech. 651 55
[58] Brett J M and Yiannakopolous G 2008 Int. J. Impact Eng. 35 206
[59] Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S and Charlier H 2005 J. Fluid Mech. 537 387
[60] Wu W, Liu M, Zhang A M and Liu Y L 2021 Phys. Rev. Fluids 6 013605
[61] Liu J Z, Hong X R, Ma J K and Duan W S 2022 Mod. Phys. Lett. B 36 2250133
[62] Taborda M A, Sommerfeld M and Muniz M 2021 Chem. Eng. Sci. 229 116121
[63] Dehane A, Merouani S, Hamdaoui O and Alghyamah A 2021 Ultrason. Sonochem. 73 105498
[64] Omoteso K A, Roy-Layinde T O, Laoye J A, Vincent U E and McClintock P V E 2021 Ultrason. Sonochem. 70 105346
[65] Miyauchi T and Takata S 2024 Phys. Rev. E 110 025102
[66] Xu P, Li B, Ren Z B, Liu S H and Zuo Z G 2023 Phys. Rev. Fluids 8 083601
[67] Feng K, Eshraghi J, Vlachos P P and Gomez H 2024 Phys. Fluids 36 053305
[68] Shaw S J 2006 Phys. Fluids 18 072104
[69] Liu J Z and Duan W S 2024 Indian J. Phys. 98 2105
[70] Gvozdeva L, Gavrenkov S and Nesterov A 2015 Shock Waves 25 283
[1] Dynamic modeling of cavitation bubble clusters: Effects of evaporation, condensation, and bubble—bubble interaction
Long Xu(许龙), Xin-Rui Yao(姚昕锐), and Yang Shen(沈阳). Chin. Phys. B, 2024, 33(4): 044702.
[2] Decoupling of temporal/spatial broadening effects in Doppler wind LiDAR by 2D spectral analysis
Zhen Liu(刘珍), Yun-Peng Zhang(张云鹏), Xiao-Peng Zhu(竹孝鹏), Ji-Qiao Liu(刘继桥), De-Cang Bi(毕德仓), and Wei-Biao Chen(陈卫标). Chin. Phys. B, 2024, 33(3): 034214.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[5] Simulation of a torrential rainstorm in Xinjiang and gravity wave analysis
Rui Yang(杨瑞), Yi Liu(刘毅), Ling-Kun Ran(冉令坤), Yu-Li Zhang(张玉李). Chin. Phys. B, 2018, 27(5): 059201.
[6] Bubble nonlinear dynamics and stimulated scattering process
Jie Shi(时洁), De-Sen Yang(杨德森), Sheng-Guo Shi(时胜国), Bo Hu(胡博), Hao-Yang Zhang(张昊阳), Shi-Yong Hu(胡诗涌). Chin. Phys. B, 2016, 25(2): 024304.
[7] Effect of supercritical water shell on cavitation bubble dynamics
Shao Wei-Hang (邵纬航), Chen Wei-Zhong (陈伟中). Chin. Phys. B, 2015, 24(5): 054701.
[8] Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics
Xu Zheng (徐峥), Yasuda Keiji (安田启司), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(10): 104301.
No Suggested Reading articles found!