Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087701    DOI: 10.1088/1674-1056/acd524
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack

Xiaoqing Sun(孙晓清)1,2, Hao Xu(徐昊)1,2, Junshuai Chai(柴俊帅)1,2, Xiaolei Wang(王晓磊)1,2, and Wenwu Wang(王文武)1,2,3,†
1. Key Laboratory of Microelectronics & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
2. College of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Bureau of Major R&D Programs Chinese Academy of Sciences, Beijing 100864, China
Abstract  We study the charge trapping phenomenon that restricts the endurance of n-type ferroelectric field-effect transistors (FeFETs) with metal/ferroelectric/interlayer/Si (MFIS) gate stack structure. In order to explore the physical mechanism of the endurance failure caused by the charge trapping effect, we first establish a model to simulate the electron trapping behavior in n-type Si FeFET. The model is based on the quantum mechanical electron tunneling theory. And then, we use the pulsed Id-Vg method to measure the threshold voltage shift between the rising edges and falling edges of the FeFET. Our model fits the experimental data well. By fitting the model with the experimental data, we get the following conclusions. (i) During the positive operation pulse, electrons in the Si substrate are mainly trapped at the interface between the ferroelectric (FE) layer and interlayer (IL) of the FeFET gate stack by inelastic trap-assisted tunneling. (ii) Based on our model, we can get the number of electrons trapped into the gate stack during the positive operation pulse. (iii) The model can be used to evaluate trap parameters, which will help us to further understand the fatigue mechanism of FeFET.
Keywords:  ferroelectric      interface      ferroelectric field-effect transistors (FeFETs)      charge trapping  
Received:  21 February 2023      Revised:  12 May 2023      Accepted manuscript online:  12 May 2023
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.92264104).
Corresponding Authors:  Wenwu Wang     E-mail:  wangwenwu@ime.ac.cn

Cite this article: 

Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武) Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack 2023 Chin. Phys. B 32 087701

[1] Li Y, Liu X P, Sun T Y, Zhang F B, Fu T, Wang-yang P H, Li H O and Chen Y H 2016 Proceedings of the 62th IEEE International Electron Devices Meeting (IEDM), December 3-7, 2016, San Francisco, America, pp. 11.5.1
[9] Yurchuk E, Müller J, Knebel S, Sundqvist J, Graham A P, Melde T, Schröder U and Mikolajick T 2017 Proceedings of the 63th IEEE International Electron Devices Meeting (IEDM), December 2-6, 2017, San Francisco, America, pp. 19.7.1
[12] Li X Q, George S, Liang Y H, Ma K S, Ni K, Aziz A, Gupta S K, Sampson J, Chang M F, Liu Y P, Yang H Z, Datta S and Narayanan V 2020 Proceedings of the 39th IEEE Symposium on VLSI Technology, June 16-19, 2020, Honolulu, America, p. 1
[19] Saitoh M, Ichihara R, Yamaguchi M, Suzuki K, Takano K, Akari K, Takahashi K, Kamiya Y, Matsuo K, Kamimuta Y, Sakuma K, Ota K and Fujii S 2020 Proceedings of the 66th IEEE International Electron Devices Meeting (IEDM), December 12-18, 2020, San Francisco, America, pp. 18.1.1
[20] Toprasertpong K, Lin Z Y, Lee T E, Takenaka M and Takagi S 2020 Proceedings of the 39th IEEE Symposium on VLSI Technology, June 16-19, 2020, Honolulu, America, p. 1
[21] Wang Z, Tasneem N, Islam M M, Chen H, Hur J, Chern W, Yu S M and Khan A 2020 Proceedings of the 66th IEEE International Electron Devices Meeting (IEDM), December 12-18, 2020, San Francisco, America, pp. 4.4.1
[24] Ryndyk D A 2018 Theory of Quantum Transport at Nanoscale (introduction and contents) (Berlin: Springer)
[25] Liu L, Liu C, Jiang L, Li J, Ding Y, Wang S, Jiang Y G, Sun Y B, Wang J, Chen S, Zhang D W and Zhou P 2020 Proceedings of the 66th IEEE International Electron Devices Meeting (IEDM), December 12-18, 2020, San Francisco, America, pp. 18.6.1
[1] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[2] Investigation of heavy ion irradiation effects on a charge trapping memory capacitor by C-V measurement
Qiyu Chen(陈麒宇), Xirong Yang(杨西荣), Zongzhen Li(李宗臻), Jinshun Bi(毕津顺), Kai Xi(习凯), Zhenxing Zhang(张振兴), Pengfei Zhai(翟鹏飞), Youmei Sun(孙友梅), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(9): 096102.
[3] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[4] Microwave absorption and bandwidth study of Y2Co17 rare earth soft magnetic alloy with easy-plane anisotropy
Yun-Guo Ma(马云国), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Hao Wang(王浩), Zhe Sun(孙哲), Cheng-Fa Tu(涂成发), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(8): 084202.
[5] First-principles study of non-radiative carrier capture by defects at amorphous-SiO2/Si(100) interface
Haoran Zhu(祝浩然), Weifeng Xie(谢伟锋), Xin Liu(刘欣), Yang Liu(刘杨), Jinli Zhang(张金利), and Xu Zuo(左旭). Chin. Phys. B, 2023, 32(7): 077303.
[6] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[7] Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: A trade-off of electrical effects
Ye Tu(涂野), Yong Li(李勇), and Guanchao Yin(殷官超). Chin. Phys. B, 2023, 32(6): 068101.
[8] A first-principles study on remote van der Waals epitaxy through a graphene monolayer on semiconductor substrates
Rui Hou(侯锐) and Shenyuan Yang(杨身园). Chin. Phys. B, 2023, 32(6): 066801.
[9] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[10] Impact of low-dose radiation on nitrided lateral 4H-SiC MOSFETs and the related mechanisms
Wen-Hao Zhang(张文浩), Ma-Guang Zhu(朱马光), Kang-Hua Yu(余康华), Cheng-Zhan Li(李诚瞻),Jun Wang(王俊), Li Xiang(向立), and Yu-Wei Wang(王雨薇). Chin. Phys. B, 2023, 32(5): 057305.
[11] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[12] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
[13] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[14] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[15] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
No Suggested Reading articles found!