INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors |
Liping Zhang(张丽萍)†, Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕) |
School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China |
|
|
Abstract The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency. Based on a self-consistent quantum hydrodynamic model, the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects. We analyzed the influence of weak magnetic fields, quantum effects, device size, and temperature on the instability of plasma waves under asymmetric boundary conditions numerically. The results show that the magnetic fields, quantum effects, and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency. Additionally, we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment. The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
|
Received: 24 October 2023
Revised: 28 December 2023
Accepted manuscript online: 15 January 2024
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
52.20.-j
|
(Elementary processes in plasmas)
|
|
52.35.-g
|
(Waves, oscillations, and instabilities in plasmas and intense beams)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12065015) and the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology. |
Corresponding Authors:
Liping Zhang
E-mail: zhanglp@lut.edu.cn
|
Cite this article:
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕) Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors 2024 Chin. Phys. B 33 048102
|
[1] Hosseininejad S E, Neshat M, Faraji-Dana R, Lemme M, Bolivar P H, Cabellos-Aparicio A, Alarcon E and Abadal S 2018 Nanomaterials 8 577 [2] Liu W Q, Lu Y F, Jiao G H, Chen X F, Zhou Z S, She R B, Li J Y, Chen S H, Dong Y M and Lv J C 2016 Chin. Phys. B 25 060702 [3] Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D:Appl. Phys. 50 043001 [4] Leitenstorfer A, Moskalenko A S, Kampfrath T, et al. 2023 J. Phys. D:Appl. Phys. 56 223001 [5] Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F and Sun L L 2019 Chin. Phys. B 28 048703 [6] Dyakonov M and Shur M 1993 Phys. Rev. Lett. 71 2465 [7] Dyakonov M I 2010 C. R. Phys. 11 413 [8] Knap W, Dyakonov M, Coquillat D, Teppe F, Dyakonova N, Lusakowski J, Karpierz K, Sakowicz M, Valusis G, Seliuta D, Kasalynas I, Fatimy A EI, Meziani Y M and Otsuji T 2009 J. Infrared Millim. Te. 30 1319 [9] Dmitriev A P, Furman A S, Kachorovskii V Yu, Samsonidze G G and Samsonidze Ge G 1997 Phys. Rev. B 55 10319 [10] Mendl C B, Polini M and Lucas A 2021 Appl. Phys. Lett. 118 013105 [11] Otsuji T, Popov V and Ryzhii V 2014 J. Phys. D:Appl. Phys. 47 094006 [12] Wang X R, Yi S and Zhang R 2013 Chin. Phys. B 22 098505 [13] Li X F, Xiong X and Wu Y Q 2017 Chin. Phys. B 26 037307 [14] Svintsov D, Vyurkov V, Ryzhii V and Otsuji T 2013 Phys. Rev. B 88 245444 [15] Lucas A and Fong K C 2018 J. Phys.:Condens. Matter 30 053001 [16] Torre I, Tomadin A, Geim A K and Polini M 2015 Phys. Rev. B 92 165433 [17] Levitov L and Falkovich G 2016 Nat. Phys. 12 672 [18] Hosen K, Islam M R and Liu K 2020 Chin. J. Chem. Phys. 33 757 [19] Narozhny B N, Gornyi I V, Mirlin A D and Schmalian J 2017 Ann. Phys. 529 1700043 [20] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865 [21] Schwierz F 2010 Nat. Nanotechnol. 5 487 [22] Müller M, Schmalian J and Fritz L 2009 Phys. Rev. Lett. 103 025301 [23] Yamoah M A, Yang W M, Pop E and Goldhaber-Gordon D 2017 ACS Nano 11 9914 [24] Bandurin D A, Torre I, Kumar R K, Shalom M B, Tomadin A, Principi A, Auton G H, Khestanova E, Novoselov K S, Grigorieva I V, Ponomarenko L A, Geim A K and Polini M 2016 Science 351 1055 [25] Viti L, Purdie D G, Lombardo A, Ferrari A C and Vitiello M S 2020 Nano Lett. 20 3169 [26] Crabb J, Cantos-Roman X, Jornet J M and Aizin G R 2021 Phys. Rev. B 104 155440 [27] Cosme P and Tercas H 2020 ACS Photon. 7 1375 [28] Dyakonova N, Teppe F, Lusakowski J, Knap W, Levinshtein M, Dmitriev A P, Shur M S, Bollaert S and Cappy A 2005 J. Appl. Phys. 97 114313 [29] Cosme P and Tercas H 2021 Appl. Phys. Lett. 118 131109 [30] Fang N and Nagashio K 2020 2D Mater. 7 014001 [31] Zhang L P, Feng J X, Liu C X and Su J Y 2022 Chin. J. Phys. 75 104 [32] Zhang L P and Xue J K 2013 Phys. Plasmas 20 082118 [33] Haas F 2005 Phys. Plasmas 12 062117 [34] Manfredi G 2005 Fields Inst. Commun. 46 263 [35] Madelung E 1926 Z. Phys. 40 322 [36] Figueiredo J L, Bizarro J P S and Tercas H 2022 New J. Phys. 24 023026 [37] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [38] Chaves A J, Peres N M R, Smirnov G and Mortensen N A 2017 Phys. Rev. B 96 195438 [39] Zhu W J, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402 [40] Chen F F 2016 Introduction to plasma physics and controlled fusion (Switzerland:Springer International Publishing) pp. 51——88 [41] Kushwaha M S and Vasilopoulos P 2001 Phys. Rev. B 64 125320 [42] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 [43] Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 077803 [44] Zhu W J, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|