Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 048102    DOI: 10.1088/1674-1056/ad1e66
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors

Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕)
School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency. Based on a self-consistent quantum hydrodynamic model, the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects. We analyzed the influence of weak magnetic fields, quantum effects, device size, and temperature on the instability of plasma waves under asymmetric boundary conditions numerically. The results show that the magnetic fields, quantum effects, and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency. Additionally, we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment. The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
Keywords:  graphene field-effect transistors      external magnetic field      radiation frequency      instability increment  
Received:  24 October 2023      Revised:  28 December 2023      Accepted manuscript online:  15 January 2024
PACS:  81.05.ue (Graphene)  
  52.20.-j (Elementary processes in plasmas)  
  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12065015) and the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology.
Corresponding Authors:  Liping Zhang     E-mail:  zhanglp@lut.edu.cn

Cite this article: 

Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕) Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors 2024 Chin. Phys. B 33 048102

[1] Hosseininejad S E, Neshat M, Faraji-Dana R, Lemme M, Bolivar P H, Cabellos-Aparicio A, Alarcon E and Abadal S 2018 Nanomaterials 8 577
[2] Liu W Q, Lu Y F, Jiao G H, Chen X F, Zhou Z S, She R B, Li J Y, Chen S H, Dong Y M and Lv J C 2016 Chin. Phys. B 25 060702
[3] Dhillon S S, Vitiello M S, Linfield E H, et al. 2017 J. Phys. D:Appl. Phys. 50 043001
[4] Leitenstorfer A, Moskalenko A S, Kampfrath T, et al. 2023 J. Phys. D:Appl. Phys. 56 223001
[5] Zhao J W, He M X, Dong L J, Li S X, Liu L Y, Bu S C, Ouyang C M, Wang P F and Sun L L 2019 Chin. Phys. B 28 048703
[6] Dyakonov M and Shur M 1993 Phys. Rev. Lett. 71 2465
[7] Dyakonov M I 2010 C. R. Phys. 11 413
[8] Knap W, Dyakonov M, Coquillat D, Teppe F, Dyakonova N, Lusakowski J, Karpierz K, Sakowicz M, Valusis G, Seliuta D, Kasalynas I, Fatimy A EI, Meziani Y M and Otsuji T 2009 J. Infrared Millim. Te. 30 1319
[9] Dmitriev A P, Furman A S, Kachorovskii V Yu, Samsonidze G G and Samsonidze Ge G 1997 Phys. Rev. B 55 10319
[10] Mendl C B, Polini M and Lucas A 2021 Appl. Phys. Lett. 118 013105
[11] Otsuji T, Popov V and Ryzhii V 2014 J. Phys. D:Appl. Phys. 47 094006
[12] Wang X R, Yi S and Zhang R 2013 Chin. Phys. B 22 098505
[13] Li X F, Xiong X and Wu Y Q 2017 Chin. Phys. B 26 037307
[14] Svintsov D, Vyurkov V, Ryzhii V and Otsuji T 2013 Phys. Rev. B 88 245444
[15] Lucas A and Fong K C 2018 J. Phys.:Condens. Matter 30 053001
[16] Torre I, Tomadin A, Geim A K and Polini M 2015 Phys. Rev. B 92 165433
[17] Levitov L and Falkovich G 2016 Nat. Phys. 12 672
[18] Hosen K, Islam M R and Liu K 2020 Chin. J. Chem. Phys. 33 757
[19] Narozhny B N, Gornyi I V, Mirlin A D and Schmalian J 2017 Ann. Phys. 529 1700043
[20] Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V and Tredicucci A 2012 Nat. Mater. 11 865
[21] Schwierz F 2010 Nat. Nanotechnol. 5 487
[22] Müller M, Schmalian J and Fritz L 2009 Phys. Rev. Lett. 103 025301
[23] Yamoah M A, Yang W M, Pop E and Goldhaber-Gordon D 2017 ACS Nano 11 9914
[24] Bandurin D A, Torre I, Kumar R K, Shalom M B, Tomadin A, Principi A, Auton G H, Khestanova E, Novoselov K S, Grigorieva I V, Ponomarenko L A, Geim A K and Polini M 2016 Science 351 1055
[25] Viti L, Purdie D G, Lombardo A, Ferrari A C and Vitiello M S 2020 Nano Lett. 20 3169
[26] Crabb J, Cantos-Roman X, Jornet J M and Aizin G R 2021 Phys. Rev. B 104 155440
[27] Cosme P and Tercas H 2020 ACS Photon. 7 1375
[28] Dyakonova N, Teppe F, Lusakowski J, Knap W, Levinshtein M, Dmitriev A P, Shur M S, Bollaert S and Cappy A 2005 J. Appl. Phys. 97 114313
[29] Cosme P and Tercas H 2021 Appl. Phys. Lett. 118 131109
[30] Fang N and Nagashio K 2020 2D Mater. 7 014001
[31] Zhang L P, Feng J X, Liu C X and Su J Y 2022 Chin. J. Phys. 75 104
[32] Zhang L P and Xue J K 2013 Phys. Plasmas 20 082118
[33] Haas F 2005 Phys. Plasmas 12 062117
[34] Manfredi G 2005 Fields Inst. Commun. 46 263
[35] Madelung E 1926 Z. Phys. 40 322
[36] Figueiredo J L, Bizarro J P S and Tercas H 2022 New J. Phys. 24 023026
[37] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[38] Chaves A J, Peres N M R, Smirnov G and Mortensen N A 2017 Phys. Rev. B 96 195438
[39] Zhu W J, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402
[40] Chen F F 2016 Introduction to plasma physics and controlled fusion (Switzerland:Springer International Publishing) pp. 51——88
[41] Kushwaha M S and Vasilopoulos P 2001 Phys. Rev. B 64 125320
[42] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[43] Chen X Y, Tian Z, Li Q, Li S X, Zhang X Q, Ouyang C M, Gu J Q, Han J G and Zhang W L 2020 Chin. Phys. B 29 077803
[44] Zhu W J, Perebeinos V, Freitag M and Avouris P 2009 Phys. Rev. B 80 235402
[1] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏), . Chin. Phys. B, 2024, 33(6): 066101.
[2] Effects of strain on the flat band in twisted bilayer graphene
Zhen Zhang(张镇), Lu Wen(文露), Youkai Qiao(乔友凯), and Zhiqiang Li(李志强). Chin. Phys. B, 2023, 32(10): 107302.
[3] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[4] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[5] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[6] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[9] Thermoelectric characteristics of flexible reduced graphene oxide/silver selenide nanowire composites prepared by a facile vacuum filtration process
Zuo Xiao(肖佐), Yong Du(杜永), Qiufeng Meng(孟秋风), and Lei Wang(王磊). Chin. Phys. B, 2022, 31(2): 028103.
[10] Preparation of graphene on SiC by laser-accelerated pulsed ion beams
Danqing Zhou(周丹晴), Dongyu Li(李东彧), Yuhan Chen(陈钰焓), Minjian Wu(吴旻剑), Tong Yang(杨童), Hao Cheng(程浩), Yuze Li(李昱泽), Yi Chen(陈艺), Yue Li(李越), Yixing Geng(耿易星), Yanying Zhao(赵研英), Chen Lin(林晨), Xueqing Yan(颜学庆), and Ziqiang Zhao(赵子强). Chin. Phys. B, 2021, 30(11): 116106.
[11] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[12] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[13] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[14] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[15] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
No Suggested Reading articles found!