Special Issue:
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
|
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS |
Prev
Next
|
|
|
Polarization pinning at antiphase boundaries in multiferroic YbFeO3 |
Guodong Ren1, Pravan Omprakash1, Xin Li2, Yu Yun2,3, Arashdeep S. Thind1, Xiaoshan Xu2,4, and Rohan Mishra5,1,† |
1 Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; 2 Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, USA; 3 Department of Mechanical Engineering & Mechanics, Drexel University, Philadelphia, PA 19104-2875, USA; 4 Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA; 5 Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130, USA |
|
|
Abstract The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO$_{3}$. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO$_{3}$ thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO$_{6}$ octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO$_{6}$ octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.
|
Received: 30 August 2024
Revised: 11 October 2024
Accepted manuscript online: 30 October 2024
|
PACS:
|
85.70.Ge
|
(Ferrite and garnet devices)
|
|
64.70.K-
|
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
91.60.Ed
|
(Crystal structure and defects, microstructure)
|
|
Fund: This work was supported by the National Science Foundation (NSF) (Grant Nos. DMR-2122070, 2145797, and 1454618), and by the Nebraska Center for Energy Sciences Research (NCESR). The Microscopy work was conducted as part of a user project at the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. This work used computational resources through allocation DMR160007 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by NSF grants #2138259, #2138286, #2138307, #2137603, and #2138296. |
Corresponding Authors:
Rohan Mishra
E-mail: rmishra@wustl.edu
|
Cite this article:
Guodong Ren, Pravan Omprakash, Xin Li, Yu Yun, Arashdeep S. Thind, Xiaoshan Xu, and Rohan Mishra Polarization pinning at antiphase boundaries in multiferroic YbFeO3 2024 Chin. Phys. B 33 118502
|
[1] Sugiyama I, Shibata N, Wang Z, et al. 2013 Nat. Nanotechnol. 8 266 [2] Ikuhara Y 2009 Progress in Mater. Sci. 54 770 [3] Catalan G, Seidel J, Ramesh R and Scott J F 2012 Rev. Mod. Phys. 84 119 [4] Li M, Huang Z, Tang C, et al. 2019 Adv. Funct. Mater. 29 1906655 [5] Rojac T, Bencan A, Drazic G, et al. 2017 Nat. Mater. 16 322 [6] Kim Y M, Morozovska A, Eliseev E, et al. 2014 Nat. Mater. 13 1019 [7] Kalinin S V, Rodriguez B J, Borisevich A Y, et al. 2010 Adv. Mater. 22 314 [8] Farokhipoor S, Magen C, Venkatesan S, et al. 2014 Nature 515 379 [9] Meier D and Selbach S M 2021 Nat. Rev. Mater. 7 157 [10] Ishikawa R, Okunishi E, Sawada H, et al. 2011 Nat. Mater. 10 278 [11] Krivanek O L, Chisholm M F, Nicolosi V, et al. 2010 Nature 464 571 [12] Nellist P D, Chisholm M F, Dellby N, et al. 2004 Science 305 1741 [13] Pennycook S J and Jesson D E 1991 Ultramicroscopy 37 14 [14] Pennycook S J and Jesson D E 1990 Phys. Rev. Lett. 64 938 [15] Browning N D, Chisholm M F and Pennycook S J 1993 Nature 366 143 [16] Oxley M P, Lupini A R and Pennycook S J 2017 Rep. Prog. Phys. 80 026101 [17] Pennycook S J 2015 MRS Bulletin 40 71 [18] Gazquez J, Guzman R, Mishra R, et al. 2016 Adv. Sci. 3 1500295 [19] Biškup N, Salafranca J, Mehta V, et al. 2014 Phys. Rev. Lett. 112 087202 [20] Klie R F, Buban J P, Varela M, et al. 2005 Nature 435 475 [21] Kim M, Duscher G, Browning N D, et al. 2001 Phys. Rev. Lett. 86 4056 [22] Yan Y, Chisholm M F, Duscher G, et al. 1998 Phys. Rev. Lett. 81 3675 [23] Pennycook S J and Nellist P D 2011 Scanning Transmission Electron Microscopy (Springer Science & Business Media) [24] Kimura T, Goto T, Shintani H, et al. 2003 Nature 426 55 [25] Wang W, Zhao J, Wang W, et al. 2013 Phys. Rev. Lett. 110 237601 [26] Sinha K, Wang H, Wang X, Zhou L, Yin Y, Wang W, et al. 2018 Phys. Rev. Lett. 121 237203 [27] Yen F, Dela Cruz C, Lorenz B, et al. 2007 J. Mater. Res. 22 2163 [28] Jeong Y K, Lee J H, Ahn S J, et al. 2012 J. Am. Chem. Soc. 134 1450 [29] Xu X and Wang W 2014 Mod. Phys. Lett. B 28 1430008 [30] Lilienblum M, Lottermoser T, Manz S, et al. 2015 Nat. Phys. 11 1070 [31] Mundy J A, Brooks C M, Holtz M E, et al. 2016 Nature 537 523 [32] Li X, Yun Y, Thind A S, et al. 2023 Sci. Rep. 13 1755 [33] Barrozo P, Smabraten D R, Tang Y L, et al. 2020 Adv. Mater. 32 e2000508 [34] Skjaervo S H, Wefring E T, Nesdal S K, et al. 2016 Nat. Commun. 7 13745 [35] Evans D M, Småbråten D R, Holstad T S, et al. 2021 Nano Lett. 21 3386 [36] Gelard I, Jehanathan N, Roussel H, et al. 2011 Chem. Mater. 23 1232 [37] Baghizadeh A, Vieira J M, Gonçalves J N, et al. 2016 J. Phys. Chem. C 120 21897 [38] Deng S, Cheng S, Liu M, et al. 2016 ACS Appl. Mater. Int. 8 25379 [39] Yun Y, Buragohain P, Thind A S, et al. 2022 Phys. Rev. Appl. 18 034071 [40] Allen L J and Findlay S 2015 Ultramicroscopy 151 11 [41] Blöchl P E 1994 Phys. Rev. B 50 17953 [42] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [43] Perdew J P, Ruzsinszky A, Csonka G I, et al. 2008 Phys. Rev. Lett. 100 136406 [44] Dudarev S L, Botton G A, Savrasov S Y, et al. 1998 Phys. Rev. B 57 1505 [45] Griffin S M, Reidulff M, Selbach S M, et al. 2017 Chem. Mater. 29 2425 [46] Liu J, Sun T L, Liu X Q, et al. 2018 Adv. Funct. Mater. 28 1706062 [47] Giraldo M, Meier Q N, Bortis A, et al. 2021 Nat. Commun. 12 3093 [48] Kumagai Y and Spaldin N A 2013 Nat. Commun. 4 1540 [49] Artyukhin S, Delaney K T, Spaldin N A, et al. 2014 Nat. Mater. 13 42 [50] Skjærvø S H, Meier Q N, Feygenson M, et al. 2019 Phys. Rev. X 9 031001 [51] Huang F T, Wang X, Griffin S M, et al. 2014 Phys. Rev. Lett. 113 267602 [52] Holtz M E, Shapovalov K, Mundy J A, et al. 2017 Nano Lett. 17 5883 [53] Meier Q N, Lilienblum M, Griffin S M, et al. 2017 Phys. Rev. X 7 041014 [54] Matsumoto T, Ishikawa R, Tohei T, et al. 2013 Nano Lett. 13 4594 [55] Gao P, Nelson C T, Jokisaari J R, et al. 2011 Nat. Commun. 2 591 [56] Zhang D, Sando D, Sharma P, et al. 2020 Nat. Commun. 11 349 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|