Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 118502    DOI: 10.1088/1674-1056/ad8cbc
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Polarization pinning at antiphase boundaries in multiferroic YbFeO3

Guodong Ren1, Pravan Omprakash1, Xin Li2, Yu Yun2,3, Arashdeep S. Thind1, Xiaoshan Xu2,4, and Rohan Mishra5,1,†
1 Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
2 Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588, USA;
3 Department of Mechanical Engineering & Mechanics, Drexel University, Philadelphia, PA 19104-2875, USA;
4 Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA;
5 Department of Mechanical Engineering and Material Science, Washington University in St. Louis, St. Louis, MO 63130, USA
Abstract  The switching characteristics of ferroelectrics and multiferroics are influenced by the interaction of topological defects with domain walls. We report on the pinning of polarization due to antiphase boundaries in thin films of the multiferroic hexagonal YbFeO$_{3}$. We have directly resolved the atomic structure of a sharp antiphase boundary (APB) in YbFeO$_{3}$ thin films using a combination of aberration-corrected scanning transmission electron microscopy (STEM) and total energy calculations based on density-functional theory (DFT). We find the presence of a layer of FeO$_{6}$ octahedra at the APB that bridges the adjacent domains. STEM imaging shows a reversal in the direction of polarization on moving across the APB, which DFT calculations confirm is structural in nature as the polarization reversal reduces the distortion of the FeO$_{6}$ octahedral layer at the APB. Such APBs in hexagonal perovskites are expected to serve as domain-wall pinning sites and hinder ferroelectric switching of the domains.
Keywords:  hexagonal ferrites      ferroelectric      multiferroic      topological defect      STEM  
Received:  30 August 2024      Revised:  11 October 2024      Accepted manuscript online:  30 October 2024
PACS:  85.70.Ge (Ferrite and garnet devices)  
  64.70.K-  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  91.60.Ed (Crystal structure and defects, microstructure)  
Fund: This work was supported by the National Science Foundation (NSF) (Grant Nos. DMR-2122070, 2145797, and 1454618), and by the Nebraska Center for Energy Sciences Research (NCESR). The Microscopy work was conducted as part of a user project at the Center for Nanophase Materials Sciences (CNMS), which is a US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory. This work used computational resources through allocation DMR160007 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by NSF grants #2138259, #2138286, #2138307, #2137603, and #2138296.
Corresponding Authors:  Rohan Mishra     E-mail:  rmishra@wustl.edu

Cite this article: 

Guodong Ren, Pravan Omprakash, Xin Li, Yu Yun, Arashdeep S. Thind, Xiaoshan Xu, and Rohan Mishra Polarization pinning at antiphase boundaries in multiferroic YbFeO3 2024 Chin. Phys. B 33 118502

[1] Sugiyama I, Shibata N, Wang Z, et al. 2013 Nat. Nanotechnol. 8 266
[2] Ikuhara Y 2009 Progress in Mater. Sci. 54 770
[3] Catalan G, Seidel J, Ramesh R and Scott J F 2012 Rev. Mod. Phys. 84 119
[4] Li M, Huang Z, Tang C, et al. 2019 Adv. Funct. Mater. 29 1906655
[5] Rojac T, Bencan A, Drazic G, et al. 2017 Nat. Mater. 16 322
[6] Kim Y M, Morozovska A, Eliseev E, et al. 2014 Nat. Mater. 13 1019
[7] Kalinin S V, Rodriguez B J, Borisevich A Y, et al. 2010 Adv. Mater. 22 314
[8] Farokhipoor S, Magen C, Venkatesan S, et al. 2014 Nature 515 379
[9] Meier D and Selbach S M 2021 Nat. Rev. Mater. 7 157
[10] Ishikawa R, Okunishi E, Sawada H, et al. 2011 Nat. Mater. 10 278
[11] Krivanek O L, Chisholm M F, Nicolosi V, et al. 2010 Nature 464 571
[12] Nellist P D, Chisholm M F, Dellby N, et al. 2004 Science 305 1741
[13] Pennycook S J and Jesson D E 1991 Ultramicroscopy 37 14
[14] Pennycook S J and Jesson D E 1990 Phys. Rev. Lett. 64 938
[15] Browning N D, Chisholm M F and Pennycook S J 1993 Nature 366 143
[16] Oxley M P, Lupini A R and Pennycook S J 2017 Rep. Prog. Phys. 80 026101
[17] Pennycook S J 2015 MRS Bulletin 40 71
[18] Gazquez J, Guzman R, Mishra R, et al. 2016 Adv. Sci. 3 1500295
[19] Biškup N, Salafranca J, Mehta V, et al. 2014 Phys. Rev. Lett. 112 087202
[20] Klie R F, Buban J P, Varela M, et al. 2005 Nature 435 475
[21] Kim M, Duscher G, Browning N D, et al. 2001 Phys. Rev. Lett. 86 4056
[22] Yan Y, Chisholm M F, Duscher G, et al. 1998 Phys. Rev. Lett. 81 3675
[23] Pennycook S J and Nellist P D 2011 Scanning Transmission Electron Microscopy (Springer Science & Business Media)
[24] Kimura T, Goto T, Shintani H, et al. 2003 Nature 426 55
[25] Wang W, Zhao J, Wang W, et al. 2013 Phys. Rev. Lett. 110 237601
[26] Sinha K, Wang H, Wang X, Zhou L, Yin Y, Wang W, et al. 2018 Phys. Rev. Lett. 121 237203
[27] Yen F, Dela Cruz C, Lorenz B, et al. 2007 J. Mater. Res. 22 2163
[28] Jeong Y K, Lee J H, Ahn S J, et al. 2012 J. Am. Chem. Soc. 134 1450
[29] Xu X and Wang W 2014 Mod. Phys. Lett. B 28 1430008
[30] Lilienblum M, Lottermoser T, Manz S, et al. 2015 Nat. Phys. 11 1070
[31] Mundy J A, Brooks C M, Holtz M E, et al. 2016 Nature 537 523
[32] Li X, Yun Y, Thind A S, et al. 2023 Sci. Rep. 13 1755
[33] Barrozo P, Smabraten D R, Tang Y L, et al. 2020 Adv. Mater. 32 e2000508
[34] Skjaervo S H, Wefring E T, Nesdal S K, et al. 2016 Nat. Commun. 7 13745
[35] Evans D M, Småbråten D R, Holstad T S, et al. 2021 Nano Lett. 21 3386
[36] Gelard I, Jehanathan N, Roussel H, et al. 2011 Chem. Mater. 23 1232
[37] Baghizadeh A, Vieira J M, Gonçalves J N, et al. 2016 J. Phys. Chem. C 120 21897
[38] Deng S, Cheng S, Liu M, et al. 2016 ACS Appl. Mater. Int. 8 25379
[39] Yun Y, Buragohain P, Thind A S, et al. 2022 Phys. Rev. Appl. 18 034071
[40] Allen L J and Findlay S 2015 Ultramicroscopy 151 11
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[43] Perdew J P, Ruzsinszky A, Csonka G I, et al. 2008 Phys. Rev. Lett. 100 136406
[44] Dudarev S L, Botton G A, Savrasov S Y, et al. 1998 Phys. Rev. B 57 1505
[45] Griffin S M, Reidulff M, Selbach S M, et al. 2017 Chem. Mater. 29 2425
[46] Liu J, Sun T L, Liu X Q, et al. 2018 Adv. Funct. Mater. 28 1706062
[47] Giraldo M, Meier Q N, Bortis A, et al. 2021 Nat. Commun. 12 3093
[48] Kumagai Y and Spaldin N A 2013 Nat. Commun. 4 1540
[49] Artyukhin S, Delaney K T, Spaldin N A, et al. 2014 Nat. Mater. 13 42
[50] Skjærvø S H, Meier Q N, Feygenson M, et al. 2019 Phys. Rev. X 9 031001
[51] Huang F T, Wang X, Griffin S M, et al. 2014 Phys. Rev. Lett. 113 267602
[52] Holtz M E, Shapovalov K, Mundy J A, et al. 2017 Nano Lett. 17 5883
[53] Meier Q N, Lilienblum M, Griffin S M, et al. 2017 Phys. Rev. X 7 041014
[54] Matsumoto T, Ishikawa R, Tohei T, et al. 2013 Nano Lett. 13 4594
[55] Gao P, Nelson C T, Jokisaari J R, et al. 2011 Nat. Commun. 2 591
[56] Zhang D, Sando D, Sharma P, et al. 2020 Nat. Commun. 11 349
[1] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[2] Non-perturbative dynamics of flat-band systems with correlated disorder
Qi Li(李骐), Junfeng Liu(刘军丰), Ke Liu(刘克), Zi-Xiang Hu(胡自翔), and Zhou Li(李舟). Chin. Phys. B, 2024, 33(9): 097203.
[3] Interfacial stress engineering toward enhancement of ferroelectricity in Al doped HfO2 thin films
S X Chen(陈思学), M M Chen(陈明明), Y Liu(刘圆), D W Cao(曹大威), and G J Chen(陈国杰). Chin. Phys. B, 2024, 33(9): 098701.
[4] A solution method for decomposing vector fields in Hamilton energy
Xin Zhao(赵昕), Ming Yi(易鸣), Zhou-Chao Wei(魏周超), Yuan Zhu(朱媛), and Lu-Lu Lu(鹿露露). Chin. Phys. B, 2024, 33(9): 098702.
[5] Electronic structure engineering of transition metal dichalcogenides for boosting hydrogen energy conversion electrocatalysts
Bing Hao(郝兵), Jingjing Guo(郭晶晶), Peizhi Liu(刘培植), and Junjie Guo(郭俊杰). Chin. Phys. B, 2024, 33(9): 096802.
[6] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[7] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[8] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[9] Single crystal growth and transport properties of narrow-bandgap semiconductor RhP2
De-Sheng Wu(吴德胜), Ping Zheng(郑萍), and Jian-Lin Luo(雒建林). Chin. Phys. B, 2024, 33(8): 088101.
[10] Controlled fabrication of freestanding monolayer SiC by electron irradiation
Yunli Da(笪蕴力), Ruichun Luo(罗瑞春), Bao Lei(雷宝), Wei Ji(季威), and Wu Zhou(周武). Chin. Phys. B, 2024, 33(8): 086802.
[11] Three-dimensional crystal defect imaging by STEM depth sectioning
Ryo Ishikawa, Naoya Shibata, and Yuichi Ikuhara. Chin. Phys. B, 2024, 33(8): 086101.
[12] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[13] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[14] A color image encryption scheme based on a 2D coupled chaotic system and diagonal scrambling algorithm
Jingming Su(苏静明), Shihui Fang(方士辉), Yan Hong(洪炎), and Yan Wen(温言). Chin. Phys. B, 2024, 33(7): 070502.
[15] Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Xu Xiong(熊旭), Chao Ma(马超), Weitao Yang(杨卫涛), Bo Zheng(郑波), and Chao Zhou(周超). Chin. Phys. B, 2024, 33(7): 078501.
No Suggested Reading articles found!