Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 100304    DOI: 10.1088/1674-1056/ad6424
GENERAL Prev   Next  

Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling

Huan-Bo Luo(罗焕波)1,2, Xin-Feng Zhang(张鑫锋)2, Runhua Li(李润华)1, Yongyao Li(黎永耀)2, and Bin Liu(刘彬)2,†
1 Department of Physics, South China University of Technology, Guangzhou 510640, China;
2 School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
Abstract  We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting. By introducing the generalized momentum operator, the linear version of the system is solved exactly, yielding a set of Bessel vortices. Additionally, based on linear solution and using variational approximation, the solutions for the full nonlinear system and their ground state phase diagrams are derived, including the vortex states with quantum numbers $m=0$, 1, as well as mixed states. In this work, mixed states in spin-1 spin-orbit coupling (SOC) BEC are interpreted for the first time as weighted superpositions of three vortex states. Furthermore, the results also indicate that under strong Zeeman splitting, the system cannot form localized states. The variational solutions align well with numerical simulations, showing stable evolution and meeting the criteria for long-term observation in experiments.
Keywords:  spin-orbit coupling      Bessel vortices      variational method  
Received:  14 June 2024      Revised:  16 July 2024      Accepted manuscript online:  17 July 2024
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.70.Tj (Spin-orbit effects)  
Fund: Project supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515110198), the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2024A1515030131 and 2021A1515010214), the National Natural Science Foundation of China (Grant Nos. 12274077, 11905032, and 12475014), the Research Fund of the Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (Grant No. 2020B1212030010), and the Israel Science Foundation (Grant No. 1695/22).
Corresponding Authors:  Bin Liu     E-mail:  binliu@fosu.edu.cn

Cite this article: 

Huan-Bo Luo(罗焕波), Xin-Feng Zhang(张鑫锋), Runhua Li(李润华), Yongyao Li(黎永耀), and Bin Liu(刘彬) Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling 2024 Chin. Phys. B 33 100304

[1] Hauke P, Cucchietti F M, Tagliacozzo L, Deutsch I and Lewenstein M 2012 Rep. Prog. Phys. 75 082401
[2] Lewenstein M, Sanpera A and Ahufinger V 2012 Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems (Oxford)
[3] Chen G H, Wang H C, Deng H M and Malomed B A 2024 Chin. Phys. Lett. 41 020501
[4] Qin Y H, Wu Y, Zhao L C and Yang Z Y 2020 Chin. Phys. B 29 020303
[5] Yang A W, Zhou J H, Liang X Q, Li G L, Liu B, Luo H B, Malomed B A and Li Y Y 2024 New J. Phys. 26 053037
[6] Liu B, Cai X Y, Qin X ZH, Jiang X D, Xie J N, Malomed B A and Li Y Y 2023 Phys. Rev. E 108 044210
[7] Li G L, Jiang X D, Liu B, Chen Zh P, Malomed B A and Li Y Y 2024 Front. Phys. 19 22202
[8] Deng H M, Li J Q, Chen Zh P, Liu D, Jiang Ch Z, Kong C and Malomed B A 2024 Phys. Rev. E 109 064201
[9] Wang Y, Guo L, Yi S and Shi T 2020 Phys. Rev. Res. 2 043074
[10] Wang J, Liu X and Hu H 2021 Chin. Phys. B 30 010306
[11] Liu B, Chen Y, Yang A, Cai X, Liu Y, Luo Z, Qin X, Jiang X, Li Y and Malomed B A 2022 New J. Phys. 24 123026
[12] Zhang X M, Qin Y H, Ling L M and Zhao L C 2021 Chin. Phys. Lett. 39 090201
[13] Zhu J Z and Huang G X 2023 Chin. Phys. Lett. 40 100504
[14] Zhang X, Xu X, Zheng Y, Chen Z, Liu B, Huang C, Malomed B A and Li Y 2019 Phys. Rev. Lett. 123 133901
[15] Liu B, Zhang H, Zhong R, Zhang X, Qin X, Huang C, Li Y and Malomed B A 2019 Phys. Rev. A 99 053602
[16] Ding C C, Zhou Q, Xu S L, Triki H, Mirzazadeh M and Liu W 2023 Chin. Phys. Lett. 40 040501
[17] Zhang Y L, Jia C Y and Liang Z X 2022 Chin. Phys. Lett. 39 020501
[18] Guo M and Pfau T 2021 Front. Phys. 16 32202
[19] Dong L and Kartashov Y V 2021 Phys. Rev. Lett. 126 244101
[20] Luo Z, Pang W, Liu B, Li Y and Malomed B A 2021 Front. Phys. 16 32201
[21] Wang J B, Pan J S and Cui X L 2020 Chin. Phys. Lett. 37 076701
[22] Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G and Zhang X F 2018 Phys. Rev. A 97 063607
[23] Li Y, Liu Y, Fan Z, Pang W, Fu S H and Malomed B A 2017 Phys. Rev. A 95 063613
[24] Xu T F, Li W L, Li Z D and Zhang C 2018 Chaos, Solitons and Fractals 111 62
[25] Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q and Ji A C 2018 Ann. Phys. 390 180
[26] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[27] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[28] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[29] He J T, Fang B B and Lin J 2022 Chin. Phys. Lett. 39 020301
[30] Li Z, Wang J Z and Fu L B 2013 Chin. Phys. Lett. 30 010301
[31] Wang J, Liang J C, Yu Z F, Zhang A Q, Zhang A X and Xue J K 2023 Chin. Phys. B 32 090305
[32] Zhu H, Yin S G and Liu W M 2022 Chin. Phys. B 31 060305
[33] Zhu H, Yin S G and Liu W M 2022 Chin. Phys. B 31 040306
[34] Li J, He T C, Bai J, Liu B and Wang H Y 2021 Chin. Phys. B 30 030302
[35] Liu K Y, He H X, Wang C H, Chen Y Y and Zhang Y P 2022 Phys. Rev. A 105 013323
[36] Lü H, Zhu S B, Qian J and Wang Y Z 2015 Chin. Phys. B 24 090308
[37] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[38] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[39] Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S and Pan J W 2021 Science 372 271
[40] Anderson B M, Juzeliūnas G, Galitski V M and Spieman I B 2012 Phys. Rev. Lett. 108 235301
[41] Xiong L, Gong M, Fang Z X and Sun R 2023 Chin. Phys. Lett. 40 127402
[42] Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
[43] Luo H B, Malomed B A, Liu W M and Li L 2022 Phys. Rev. A 106 063311
[44] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[45] Kawakami T, Mizushima T and Machida K 2011 Phys. Rev. A 84 011607
[46] Ramachandhran B, Opanchuk B, Liu X J, Pu H, Drummond P D and Hu H 2012 Phys. Rev. A 85 023606
[47] Sakaguchi H, Li B and Malomed B A 2014 Phys. Rev. E 89 032920
[48] Sakaguchi H, Sherman E Y and Malomed B A 2016 Phys. Rev. E 94 032202
[49] Sakaguchi H and Li B 2013 Phys. Rev. A 87 015602
[50] Luo H B, Malomed B A, Liu W M and Li L 2022 Commun. Nonlinear Sci. Numer. Simul. 115 106769
[51] Zhu H, Yin S G and Liu W M 2022 Chin. Phys. B 31 040306
[52] Luo H B, Li L, Malomed B A, Li Y and Liu B 2024 Phys. Rev. A 109 013326
[53] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[54] Chen X, Deng Z, Xu X, Li Sh, Fan Z, Chen Zh, Liu B and Li Y 2020 Nonlinear Dyn. 101 569
[55] Salasnich L and Malomed B A 2013 Phys. Rev. A 87 063625
[56] Kartashov Y V, Konotop V V and Abdullaev F Kh 2013 Phys. Rev. Lett. 111 060402
[57] Salasnich L, Cardoso W B and Malomed B A 2014 Phys. Rev. A 90 033629
[58] Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
[59] Li Y, Liu Y, Fan Z, Pang W, Fu S and Malomed B A 2017 Phys. Rev. A 95 063613
[60] Sakaguchi H and Malomed B A 2018 Phys. Rev. A 97 013607
[61] Kartashov Y V, Torner L, Modugno M, Sherman E Ya, Malomed B A and Konotop V V 2020 Phys. Rev. Res. 2 013036
[62] Zhang Y C, Zhou Z W, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
[63] Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[64] Wang X, Tan R B, Du Z J, Zhao W Y, Zhang X F and Zhang S G 2014 Chin. Phys. B 23 070308
[65] Ye Z J, Chen Y X, Zheng Y L, Chen X W and Liu B 2020 Chaos, Solitons and Fractals 130 109418
[66] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[67] Wang S, Liu Y H and Xu T F 2022 Chin. Phys. B 31 070306
[68] Guo H, Qiu X, Ma Y, Jiang H F and Zhang X F 2021 Chin. Phys. B 30 060310
[69] Xu Y, Zhang Y P and Wu B 2013 Phys. Rev. A 87 013614
[70] Pang W, Deng H, Liu B, Xu J and Li Y 2018 Appl. Sci. 8 1771
[71] Shamriz E, Chen Z P and Malomed B A 2020 Commun. Nonlinear Sci. Numer. Simulat. 91 105412
[72] Liu B, Zhong R X, Chen Z P, Qin X Z, Zhong H H, Li Y Y and Malomed B A 2020 New J. Phys. 22 043004
[73] Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B and Zhang X F 2019 Acta Phys. Sin. 68 080301 (in Chinese)
[74] Xu X X, Zhao F Y, Zhou Y G, Liu B, Jiang X D, Malomed B A and Li Y Y 2023 Commun. Nonlinear Sci. Numer. Simulat. 117 106930
[75] He J T, Fang P P and Lin J 2022 Chin. Phys. Lett. 39 020301
[76] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
[77] Gautam S and Adhikari S K 2017 Phys. Rev. A 95 013608
[78] Adhikari S K 2021 Phys. Rev. A 103 L011301
[79] Li J Z, Luo H B and Li L 2022 Phys. Rev. A 106 063321
[80] Mithun T, Fritsch A R, Koutsokostas G N, Frantzeskakis D J, Spielman I B and Kevrekidis P G 2024 Phys. Rev. A 109 023328
[81] Wen L, Liang Y, Zhou J, Yu P, Xia L, Niu L B and Zhang X F 2019 Acta Phys. Sin. 68 080301 (in Chinese)
[82] Sakaguchi H and Malomed B A 2018 Phys. Rev. A 97 013607
[83] Chen Z, Li Y and Malomed B A 2020 Phys. Rev. Res. 2 033214
[84] Lagarias J C, Reeds J A, Wright M H and Wright P E 1998 SIAM J. Optimiz. 9 112
[1] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[2] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[3] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[4] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[5] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[6] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[7] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[8] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[9] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[10] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[11] Phonon dichroism in proximitized graphene
Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(10): 106301.
[12] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[13] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[14] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[15] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
No Suggested Reading articles found!