|
|
Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations |
Long-Quan Lai(赖龙泉)1,† and Zhao Li(李照)2 |
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China |
|
|
Abstract Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications. In this work, we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions. We give the regimes for discrete modes, and find that the emission can be distinctly suppressed. The configuration induces a broad band, but few particles are ejected due to the interference of the matter waves. We further qualitatively model the emission process and demonstrate the short-time behaviors. This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices, and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
|
Received: 28 May 2024
Revised: 05 July 2024
Accepted manuscript online: 09 July 2024
|
PACS:
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
05.30.Jp
|
(Boson systems)
|
|
Fund: This work was supported by the China Scholarship Council (Grant No. 201906130092), the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant No. NY223065), and the Natural Science Foundation of Sichuan Province (Grant No. 2023NSFSC1330). |
Corresponding Authors:
Long-Quan Lai
E-mail: lqlai@njupt.edu.cn
|
Cite this article:
Long-Quan Lai(赖龙泉) and Zhao Li(李照) Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations 2024 Chin. Phys. B 33 100303
|
[1] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [2] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863 [3] Moon G, Heo M S, Kim Y, Noh H R and Jhe W 2017 Phys. Rep. 698 1 [4] Eckardt A 2017 Rev. Mod. Phys. 89 011004 [5] Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114 [6] Wang Y H, Steinberg H, Jarillo-Herrero P and Gedik N 2013 Science 342 453 [7] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821 [8] Molignini P, Chitra R and Chen W 2019 Europhys. Lett. 128 36001 [9] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027 [10] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168 [11] Wintersperger K, Bukov M, Näger J, Lellouch S, Demler E, Schneider U, Bloch I, Goldman N and Aidelsburger M 2020 Phys. Rev. X 10 011030 [12] Song B, Dutta S, Bhave S, Yu J C, Carter E, Cooper N and Schneider U 2022 Nat. Phys. 18 259 [13] Pollack S E, Dries D, Hulet R G, Magalhaes K M F, Henn E A L, Ramos E R F, Caracanhas M A and Bagnato V S 2010 Phys. Rev. A 81 053627 [14] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [15] Clark L W, Gaj A, Feng L and Chin C 2017 Nature 551 356 [16] Fu H, Feng L, Anderson B M, Clark L W, Hu J, Andrade J W, Chin C and Levin K 2018 Phys. Rev. Lett. 121 243001 [17] Zhang Z, Yao K X, Feng L, Hu J and Chin C 2020 Nat. Phys. 16 652 [18] Feng L, Hu J, Clark L W and Chin C 2019 Science 363 521 [19] Fu H, Zhang Z, Yao K X, Feng L, Yoo J, Clark L W, Levin K and Chin C 2020 Phys. Rev. Lett. 125 183003 [20] Meznaršič T, Zitko R, Arh T, Gosar K, Zupanič E and Jeglič P 2020 Phys. Rev. A 101 031601 [21] Kim K, Hur J, Huh S J, Choi S and Choi J Y 2021 Phys. Rev. Lett. 127 043401 [22] Chen T and Yan B 2018 Phys. Rev. A 98 063615 [23] Wu Z G and Zhai H 2019 Phys. Rev. A 99 063624 [24] Chih L Y and Holland M 2020 New J. Phys. 22 033010 [25] Lellouch S and Goldman N 2018 Quantum Sci. Technol. 3 024011 [26] Martone G I, Larré P É, Fabbri A and Pavloff N 2018 Phys. Rev. A 98 063617 [27] Zhang P F and Gu Y F 2020 SciPost Phys. 9 079 [28] Xu P and Zhang W X 2021 Phys. Rev. A 104 023324 [29] Liu N and Tu Z C 2020 Commun. Theor. Phys. 72 125501 [30] Lai L Q, Yu Y B and Mueller E J 2021 Phys. Rev. A 104 033308 [31] Lai L Q, Yu Y B and Mueller E J 2022 Phys. Rev. A 106 033302 [32] Lai L Q and Li Z 2024 Chin. Phys. B 33 030308 [33] Lai L Q, Li Z, Liu Q H and Yu Y B 2024 Ann. Phys. (Berlin) 536 2300365 [34] Zheng H L and Gu Q 2013 Front. Phys. 8 375 [35] Xue R, Li W D and Liang Z X 2014 Chin. Phys. Lett. 31 030302 [36] Cataldo H M and Jezek D M 2014 Phys. Rev. A 90 043610 [37] Chang N N, Yu Z F, Zhang A X and Xue J K 2017 Chin. Phys. B 26 115202 [38] Haldar S K and Alon O E 2019 New J. Phys. 21 103037 [39] Liu J L and Liang J Q 2019 Chin. Phys. B 28 110304 [40] Lindberg D R, Gaaloul N, Kaplan L, Williams J R, Schlippert D, Boege P, Rasel E M and Bondar D I 2023 J. Phys. B: At. Mol. Opt. Phys. 56 025302 [41] Korshynska K and Ulbricht S 2024 Phys. Rev. A 109 043321 [42] Milburn G J, Corney J, Wright E M and Walls D F 1997 Phys. Rev. A 55 4318 [43] Greiner M, Mandel O, Hänsch T W and Bloch I 2002 Nature 419 51 [44] Schachenmayer J, Daley A J and Zoller P 2011 Phys. Rev. A 83 043614 [45] Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R J, Kheruntsyan K V and Oberthaler M K 2016 Phys. Rev. Lett. 117 013001 [46] Zhou T, Yang K, Zhu Z, Yu X, Yang S, Xiong W, Zhou X, Chen X, Li C, Schmiedmayer J, Yue X and Zhai Y 2019 Phys. Rev. A 99 013602 [47] Hu J, Feng L, Zhang Z and Chin C 2019 Nat. Phys. 15 785 [48] Chen Y Y, Zhang P F, Zheng W, Wu Z G and Zhai H 2020 Phys. Rev. A 102 011301 [49] Lyu C, Lv C and Zhou Q 2020 Phys. Rev. Lett. 125 253401 [50] Lv C, Zhang R and Zhou Q 2020 Phys. Rev. Lett. 125 253002 [51] Cheng Y T and Shi Z Y 2021 Phys. Rev. A 104 023307 [52] Zhang J, Yang X, Lv C, Ma S and Zhang R 2022 Phys. Rev. A 106 013314 [53] Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O and Arimondo E 2007 Phys. Rev. Lett. 99 220403 [54] Kuhr S 2016 Nat. Sci. Rev. 3 170 [55] Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516 [56] Grossmann F and Hänggi P 1992 Europhys. Lett. 18 571 [57] Kayanuma Y 1994 Phys. Rev. A 50 843 [58] Della Valle G, Ornigotti M, Cianci E, Foglietti V, Laporta P and Longhi S 2007 Phys. Rev. Lett. 98 263601 [59] Creffield C E 2007 Phys. Rev. Lett. 99 110501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|