Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 118501    DOI: 10.1088/1674-1056/ad6b83
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev  

Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling

Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳)†, Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺)‡
College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China
Abstract  Combining theory and computation, we explore the Goos-Hänchen (GH) effect for electrons in a single-layered semiconductor microstructure (SLSM) modulated by Dresselhaus spin-orbit coupling (SOC). GH displacement depends on electron spins thanks to Dresselhaus SOC, therefore electron spins can be separated from the space domain and spin-polarized electrons in semiconductors can be realized. Both the magnitude and sign of the spin polarization ratio change with the electron energy, in-plane wave vector, strain engineering and semiconductor layer thickness. The spin polarization ratio approaches a maximum at resonance; however, no electron-spin polarization occurs in the SLSM for a zero in-plane wave vector. More importantly, the spin polarization ratio can be manipulated by strain engineering or semiconductor layer thickness, giving rise to a controllable spatial electron-spin splitter in the field of semiconductor spintronics.
Keywords:  semiconductor spintronics      single-layered semiconductor microstructure(SLSM)      spin-orbit coupling(SOC)      Goos-Hänchen(GH) effect      electron-spin polarization  
Received:  19 May 2024      Revised:  01 August 2024      Accepted manuscript online:  06 August 2024
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  72.80.Ey (III-V and II-VI semiconductors)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  72.25.Dc (Spin polarized transport in semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62164005).
Corresponding Authors:  Sai-Yan Chen, Mao-Wang Lu     E-mail:  maowanglu@glut.edu.cn;sychen02@126.com

Cite this article: 

Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺) Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling 2024 Chin. Phys. B 33 118501

[1] Hossain M, Qin B, Li B and Duan X D 2022 Nano Today 42 101338
[2] Linder J and Robinson J W A 2015 Nat. Phys. 11 307
[3] Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M and Zhou P 2020 Nat. Nanotechnol. 15 545
[4] Gong C and Zhang X 2019 Science 363 706
[5] Soumyanrayanan A, Reyren N, Fert A and Panagopoulos C 2016 Nature 539 509
[6] Wroóbel J, Dietl T, Łusakowski A, Grabecki G, Fronc K, Hey R, Ploog K H and Shtrikman H 2004 Phys. Rev. Lett. 93 246601
[7] Gurram M, Omar S and Wees B J V 2017 Nat. Commun. 8 248
[8] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
[9] Li C L, Zhang J and Wang X M 2023 Acta Phys. Sin. 72 227201 (in Chinese)
[10] Lu M W, Chen SY, Zhang G L and Huang X H 2018 J. Phys. Condens. Matter 30 145302
[11] Wang L and Guo Y 2006 Phys. Rev. B 73 205311
[12] Das S, Ghosh S, Kumar R, Bag A and Biswas D 2017 IEEE Trans. Electron Dev. 64 4650
[13] Kang K, Lee K H, Han Y M, Gao H, Xie S E, Müller D A and Park J 2017 Nature 550 229
[14] Zhao Y, Xie J, Zhang J and Hao Y 2014 Appl. Phys. Lett. 105 223511
[15] Bindel J R, Pezzotta M, Ulrich J, Liebmamm M, Sheman E Y and Morgenstern M 2016 Nat. Phys. 12 920
[16] Intronati G A, Tamborenea P I, Weinmann D A and Jarabert R A 2012 Phys. Rev. Lett. 108 016601
[17] Kato Y, Myers R C, Gossard A C and Awschalom D D 2004 Nature 427 50
[18] He Y P, Chen M X, Pan J F, Li D, Lin G J and Huang XH 2023 Acta Phys. Sin. 72 028503 (in Chinese)
[19] Lu K Y, He Y P, He Z Y, Zu M M and Lu M W 2023 IEEE Trans. Electron Dev. 70 1401
[20] Lu K Y, He Z Y, Zu M M and Guo S Y 2022 IEEE Electron Device Lett. 43 1645
[21] Lu K Y, He Z Y, Zu M M, Guo S Y and Lu M W 2023 IEEE Electron Device Lett. 44 1424
[22] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2020 Superlattices Microstruct. 143 106545
[23] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2020 J. Magn. Magn. Mater. 513 167217
[24] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2021 J. Magn. Magn. Mater. 527 167785
[25] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2021 Physica E 129 114646
[26] Cao X L, Chen SY, Huang X H, Guo Q M and Yang S Q 2022 Vacuum 206 111541
[27] Xie S S, Lu M W, Chen S Y, Qin Y J, Wen L and Chen J J 2023 Commun. Theor. Phys. 75 015703
[28] Chen X, Li C F and Ban Y 2008 Phys. Rev. B 77 073307
[29] Trushin M and Schliemann J 2007 New J. Phys. 9 346
[30] Rusetsky V S, Golyashov V A, Eremeev S V, Kusdov D A, Rusinov I P, Shamirzaev T S, Mironov A V, Demin A Y and Tereshchenko O E 2022 Phys. Rev. Lett. 129 166802
[1] Spin-orbit torque effect in silicon-based sputtered Mn3Sn film
Sha Lu(卢莎), Dequan Meng(孟德全), Adnan Khan, Ziao Wang(王子傲), Shiwei Chen(陈是位), and Shiheng Liang(梁世恒). Chin. Phys. B, 2024, 33(10): 107501.
[2] Shape-influenced non-reciprocal transport of magnetic skyrmions in nanoscale channel
Jie-Yao Chen(陈杰尧), Jia Luo(罗佳), Geng-Xin Hu(胡更新), Jun-Lin Wang(王君林), Guan-Qi Li(李冠祺), Zhen-Dong Chen(陈振东), Xian-Yang Lu(陆显扬), Guo-Ping Zhao(赵国平), Yuan Liu(刘远), Jing Wu(吴竞), and Yong-Bing Xu(徐永兵). Chin. Phys. B, 2024, 33(7): 077505.
[3] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[4] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[5] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[6] Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure
Jian-Hui Chen(陈建辉), Meng-Fan Liang(梁梦凡), Yan Song(宋衍), Jun-Jie Yuan(袁俊杰), Meng-Yang Zhang(张梦旸), Yong-Ming Luo(骆泳铭), and Ning-Ning Wang(王宁宁). Chin. Phys. B, 2024, 33(4): 047503.
[7] Interfacial DMI in Fe/Pt thin films grown on different buffer layers
Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵). Chin. Phys. B, 2024, 33(4): 048501.
[8] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[9] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[10] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[11] Investigation of magnetization reversal and domain structures in perpendicular synthetic antiferromagnets by first-order reversal curves and magneto-optical Kerr effect
Xiang-Qian Wang(王向谦), Jia-Nan Li(李佳楠), Kai-Zhou He(何开宙),Ming-Ling Xie(谢明玲), and Xu-Peng Zhu(朱旭鹏). Chin. Phys. B, 2023, 32(11): 117502.
[12] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
[13] Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing
Huayao Tu(涂华垚), Yanxiang Luo(雒雁翔), Kexin Zeng(曾柯心), Yuxuan Wu(吴宇轩), Like Zhang(张黎可), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(10): 107504.
[14] Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇). Chin. Phys. B, 2023, 32(8): 087507.
[15] Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink
Min-Hui Ji(冀敏慧), Xin-Miao Zhang(张欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法), Yue-Guo Hu(胡悦国), Jia-Fei Hu(胡佳飞), Wei-Cheng Qiu(邱伟成), Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森). Chin. Phys. B, 2023, 32(7): 078506.
No Suggested Reading articles found!