INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
|
|
|
Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling |
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳)†, Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺)‡ |
College of Physics and Electronic Information Engineering, Guilin University of Technology, Guilin 541004, China |
|
|
Abstract Combining theory and computation, we explore the Goos-Hänchen (GH) effect for electrons in a single-layered semiconductor microstructure (SLSM) modulated by Dresselhaus spin-orbit coupling (SOC). GH displacement depends on electron spins thanks to Dresselhaus SOC, therefore electron spins can be separated from the space domain and spin-polarized electrons in semiconductors can be realized. Both the magnitude and sign of the spin polarization ratio change with the electron energy, in-plane wave vector, strain engineering and semiconductor layer thickness. The spin polarization ratio approaches a maximum at resonance; however, no electron-spin polarization occurs in the SLSM for a zero in-plane wave vector. More importantly, the spin polarization ratio can be manipulated by strain engineering or semiconductor layer thickness, giving rise to a controllable spatial electron-spin splitter in the field of semiconductor spintronics.
|
Received: 19 May 2024
Revised: 01 August 2024
Accepted manuscript online: 06 August 2024
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62164005). |
Corresponding Authors:
Sai-Yan Chen, Mao-Wang Lu
E-mail: maowanglu@glut.edu.cn;sychen02@126.com
|
Cite this article:
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺) Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling 2024 Chin. Phys. B 33 118501
|
[1] Hossain M, Qin B, Li B and Duan X D 2022 Nano Today 42 101338 [2] Linder J and Robinson J W A 2015 Nat. Phys. 11 307 [3] Liu C S, Chen H W, Wang S Y, Liu Q, Jiang Y G, Zhang D W, Liu M and Zhou P 2020 Nat. Nanotechnol. 15 545 [4] Gong C and Zhang X 2019 Science 363 706 [5] Soumyanrayanan A, Reyren N, Fert A and Panagopoulos C 2016 Nature 539 509 [6] Wroóbel J, Dietl T, Łusakowski A, Grabecki G, Fronc K, Hey R, Ploog K H and Shtrikman H 2004 Phys. Rev. Lett. 93 246601 [7] Gurram M, Omar S and Wees B J V 2017 Nat. Commun. 8 248 [8] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790 [9] Li C L, Zhang J and Wang X M 2023 Acta Phys. Sin. 72 227201 (in Chinese) [10] Lu M W, Chen SY, Zhang G L and Huang X H 2018 J. Phys. Condens. Matter 30 145302 [11] Wang L and Guo Y 2006 Phys. Rev. B 73 205311 [12] Das S, Ghosh S, Kumar R, Bag A and Biswas D 2017 IEEE Trans. Electron Dev. 64 4650 [13] Kang K, Lee K H, Han Y M, Gao H, Xie S E, Müller D A and Park J 2017 Nature 550 229 [14] Zhao Y, Xie J, Zhang J and Hao Y 2014 Appl. Phys. Lett. 105 223511 [15] Bindel J R, Pezzotta M, Ulrich J, Liebmamm M, Sheman E Y and Morgenstern M 2016 Nat. Phys. 12 920 [16] Intronati G A, Tamborenea P I, Weinmann D A and Jarabert R A 2012 Phys. Rev. Lett. 108 016601 [17] Kato Y, Myers R C, Gossard A C and Awschalom D D 2004 Nature 427 50 [18] He Y P, Chen M X, Pan J F, Li D, Lin G J and Huang XH 2023 Acta Phys. Sin. 72 028503 (in Chinese) [19] Lu K Y, He Y P, He Z Y, Zu M M and Lu M W 2023 IEEE Trans. Electron Dev. 70 1401 [20] Lu K Y, He Z Y, Zu M M and Guo S Y 2022 IEEE Electron Device Lett. 43 1645 [21] Lu K Y, He Z Y, Zu M M, Guo S Y and Lu M W 2023 IEEE Electron Device Lett. 44 1424 [22] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2020 Superlattices Microstruct. 143 106545 [23] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2020 J. Magn. Magn. Mater. 513 167217 [24] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2021 J. Magn. Magn. Mater. 527 167785 [25] Cao Z L, Lu M W, Huang X H, Guo Q M and Yang S Q 2021 Physica E 129 114646 [26] Cao X L, Chen SY, Huang X H, Guo Q M and Yang S Q 2022 Vacuum 206 111541 [27] Xie S S, Lu M W, Chen S Y, Qin Y J, Wen L and Chen J J 2023 Commun. Theor. Phys. 75 015703 [28] Chen X, Li C F and Ban Y 2008 Phys. Rev. B 77 073307 [29] Trushin M and Schliemann J 2007 New J. Phys. 9 346 [30] Rusetsky V S, Golyashov V A, Eremeev S V, Kusdov D A, Rusinov I P, Shamirzaev T S, Mironov A V, Demin A Y and Tereshchenko O E 2022 Phys. Rev. Lett. 129 166802 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|