CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling |
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超)† |
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract With an extended Su-Schrieffer-Heeger model and Green's function method, the spin-orbit coupling (SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron-lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC, which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained. Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.
|
Received: 21 December 2023
Revised: 04 March 2024
Accepted manuscript online: 20 March 2024
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
05.60.Gg
|
(Quantum transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974215, 21933002, and 12274264). |
Corresponding Authors:
Guichao Hu
E-mail: hgc@sdnu.edu.cn
|
Cite this article:
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超) Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling 2024 Chin. Phys. B 33 077101
|
[1] Li D and Yu G 2021 Adv. Funct. Mater. 31 2100550 [2] Zhang H Q, Li D, Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, and Hu G C 2022 Phys. Lett. A 443 128200 [3] Sun X, Bedoya-Pinto A, Mao Z, Gobbi M, Yan W, Guo Y, Atxabal A, Llopis R, Yu G, Liu Y, Chuvilin A, Casanova F and Hueso L E 2016 Adv. Mater. 28 2609 [4] Zhu Y N, Jiang Q L, Zhang J and Ma Y G 2023 Chem. Asian J. 18 e202201125 [5] Meng K, Guo L D and Sun X N 2023 Nanoscale Horiz. 8 1132 [6] Hu G C, Wei J H and Xie S J 2007 Appl. Phys. Lett. 91 142115 [7] Hu G C, Zhang G P, Ren J F, Wang C K and Xie S J 2011 Appl. Phys. Lett. 99 082105 [8] Zuo M Y, Hu G C, Li Y, Ren J F and Wang C K 2014 Chin. Phys. B 23 087306 [9] Gobbi M and Orgiu E 2017 J. Mater. Chem. C 5 5572 [10] Chen J, Fan G H, Zhang Y Y, Pang W, Zheng S W and Yao G R 2012 Chin. Phys. B 21 058504 [11] Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y J 2007 Org. Electron. 8 487 [12] Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y J 2006 New J. Phys. 8 82 [13] Alotibi S, Hickey B J, Teobaldi G, Ali M, Barker J, Poli E, O’Regan D D, Ramasse Q, Burnell G, Patchett J, Ciccarelli C, Alyami M, Moorsom T and Cespedes O 2021 ACS Appl. Mater. Interfaces. 13 5228 [14] Shafikov M Z, Zaytsev A V and Kozhevnikov V N 2021 Inorg. Chem. 60 642 [15] Sun D, Zhang C, Kavand M, Wang J, Malissa H, Liu H, Popli H, Singh J, Vardeny S R, Zhang W, Boehme C and Vardeny Z V 2019 J. Chem. Phys. 151 174709 [16] Yu Z G 2012 Phys. Rev. B 85 115201 [17] Jiang H, Zhang C, Hu X N, Hu G C and Xie S J 2015 Mod. Phys. Lett. B 29 1450266 [18] Bercioux D and Lucignano P 2015 Rep. Prog. Phys. 78 106001 [19] Liang S, Geng R, Yang B, Zhao W, Chandra Subedi R, Li X, Han X and Nguyen T D 2016 Sci. Rep. 6 19461 [20] Zhang L L, Hao Y Y, Qin W, Xie S J and Qu F Y 2020 Phys. Rev. B 102 214303 [21] Maslyuk V V, Gutierrez R, Dianat A, Mujica V and Cuniberti G 2018 J. Phys. Chem. Lett. 9 5453 [22] Liu F 2023 Coshare Science 01 v3 p1-62 [23] Hu G C, Miao Y Y and Timm C 2022 Phys. Rev. B 106 144309 [24] Miao Y Y, Li D, Zhang H Q, Ren J F and Hu G C 2023 Phys. Chem. Chem. Phys. 25 7763 [25] Miao Y Y, Zhang H Q, Ma H, Li H X, Ren J F and Hu G C 2024 Phys. Rev. B 109 014314 [26] Nuccio L, Willis M, Schulz L, Fratini S, Messina F, D’Amico M, Pratt F L, Lord J S, McKenzie I, Loth M, Purushothaman B, Anthony J, Heeney M, Wilson R M, Hernández I, Cannas M, Sedlak K, Kreouzis T, Gillin W P, Bernhard C and Drew A J 2013 Phys. Rev. Lett. 110 216602 [27] Xu F, Li B, Pan H and Zhu J L 2007 Phys. Rev. B 75 085431 [28] Fallah F and Esmaeilzadeh M 2011 AIP Adv. 1 032113 [29] Vetter E, VonWald L, Yang S J, Yan L, Koohfar S, Kumah D, Yu Z G, You W and Sun D 2020 Phys. Rev. Mater. 4 085603 [30] Sierra M A, Sanchez D, Gutierrez R, Cuniberti G, Dominguez-Adame F and Diaz E 2019 Biomolecules 10 49 [31] Baronas P, Komskis R, Tankeleviciu Te E, Adomenas P, Adomeniene O and Jursenas S 2021 J. Phys. Chem. Lett. 12 6827 [32] Gutierrez R, Dáz E, Naaman R and Cuniberti G 2012 Phys. Rev. B 85 [33] Jana M K, Song R, Liu H, Khanal D R, Janke S M, Zhao R, Liu C, Valy Vardeny Z, Blum V and Mitzi D B 2020 Nat. Commun. 11 4699 [34] Naderi F and Hasanirokh K 2020 Prog. Theor. Exp. Phys. 2020 073I01 [35] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698 [36] Wang X F and Chakraborty T 2006 Phys. Rev. B 74 193103 [37] Xie S J, Ahn K H, Smith D L, Bishop A R and Saxena A 2003 Phys. Rev. B 67 125202 [38] Miao Y Y, Qiu S, Zhang G P, Wang C K, Ren J F and Hu G C 2021 Physica E 131 114729 [39] Hu G C, Zuo M Y, Li Y, Ren J F and Xie S J 2014 Appl. Phys. Lett. 104 033302 [40] Fang Z, Liu Z L and Yao K L 1994 Phys. Rev. B 49 3916 [41] Hu G C, Guo Y, Wei J H and Xie S J 2007 Phys. Rev. B 75 165321 [42] Landauer R 2006 Philos. Mag. 21 863 [43] Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Oxford University Press) [44] Paulsson M, Brandbyge M 2007 Phys. Rev. B 76 115117 [45] Zuo M Y, Hu G C, Li Y, Ren J F and Wang C K 2014 Chin. Phys. B 23 087306 [46] Lei J, Li H, Yin S and Xie S J 2008 J. Phys.: Condens. Matter 20 095201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|