Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077101    DOI: 10.1088/1674-1056/ad35ae
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling

Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超)†
School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  With an extended Su-Schrieffer-Heeger model and Green's function method, the spin-orbit coupling (SOC) effects on spin admixture of electronic states and quantum transport in organic devices are investigated. The role of lattice distortion induced by the strong electron-lattice interaction in organics is clarified in contrast with a uniform chain. The results demonstrate an enhanced SOC effect on the spin admixture of frontier eigenstates by the lattice distortion at a larger SOC, which is explained by the perturbation theory. The quantum transport under the SOC is calculated for both nonmagnetic and ferromagnetic electrodes. A more notable SOC effect on total transmission and current is observed for ferromagnetic electrodes, where spin filtering induced by spin-flipped transmission and suppression of magnetoresistance are obtained. Unlike the spin admixture, a stronger SOC effect on transmission exists for the uniform chain rather than the organic lattices with distortion. The reason is attributed to the modified spin-polarized conducting states in the electrodes by lattice configuration, and hence the spin-flip transmission, instead of the spin admixture of eigenstates. This work is helpful to understand the SOC effect in organic spin valves in the presence of lattice distortion.
Keywords:  organic spintronics      spin-orbit coupling      spin admixture      quantum transport  
Received:  21 December 2023      Revised:  04 March 2024      Accepted manuscript online: 
PACS:  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  73.43.Qt (Magnetoresistance)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11974215,21933002,and 12274264).
Corresponding Authors:  Guichao Hu     E-mail:  hgc@sdnu.edu.cn

Cite this article: 

Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超) Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling 2024 Chin. Phys. B 33 077101

[1] Li D and Yu G 2021 Adv. Funct. Mater. 31 2100550
[2] Zhang H Q, Li D, Miao Y Y, Qiu S, Zhang G P, Ren J F, Wang C K, and Hu G C 2022 Phys. Lett. A 443 128200
[3] Sun X, Bedoya-Pinto A, Mao Z, Gobbi M, Yan W, Guo Y, Atxabal A, Llopis R, Yu G, Liu Y, Chuvilin A, Casanova F and Hueso L E 2016 Adv. Mater. 28 2609
[4] Zhu Y N, Jiang Q L, Zhang J and Ma Y G 2023 Chem. Asian J. 18 e202201125
[5] Meng K, Guo L D and Sun X N 2023 Nanoscale Horiz. 8 1132
[6] Hu G C, Wei J H and Xie S J 2007 Appl. Phys. Lett. 91 142115
[7] Hu G C, Zhang G P, Ren J F, Wang C K and Xie S J 2011 Appl. Phys. Lett. 99 082105
[8] Zuo M Y, Hu G C, Li Y, Ren J F and Wang C K 2014 Chin. Phys. B 23 087306
[9] Gobbi M and Orgiu E 2017 J. Mater. Chem. C 5 5572
[10] Chen J, Fan G H, Zhang Y Y, Pang W, Zheng S W and Yao G R 2012 Chin. Phys. B 21 058504
[11] Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y J 2007 Org. Electron. 8 487
[12] Wei J H, Xie S J, Mei L M, Berakdar J and Yan Y J 2006 New J. Phys. 8 82
[13] Alotibi S, Hickey B J, Teobaldi G, Ali M, Barker J, Poli E, O’Regan D D, Ramasse Q, Burnell G, Patchett J, Ciccarelli C, Alyami M, Moorsom T and Cespedes O 2021 ACS Appl. Mater. Interfaces. 13 5228
[14] Shafikov M Z, Zaytsev A V and Kozhevnikov V N 2021 Inorg. Chem. 60 642
[15] Sun D, Zhang C, Kavand M, Wang J, Malissa H, Liu H, Popli H, Singh J, Vardeny S R, Zhang W, Boehme C and Vardeny Z V 2019 J. Chem. Phys. 151 174709
[16] Yu Z G 2012 Phys. Rev. B 85 115201
[17] Jiang H, Zhang C, Hu X N, Hu G C and Xie S J 2015 Mod. Phys. Lett. B 29 1450266
[18] Bercioux D and Lucignano P 2015 Rep. Prog. Phys. 78 106001
[19] Liang S, Geng R, Yang B, Zhao W, Chandra Subedi R, Li X, Han X and Nguyen T D 2016 Sci. Rep. 6 19461
[20] Zhang L L, Hao Y Y, Qin W, Xie S J and Qu F Y 2020 Phys. Rev. B 102 214303
[21] Maslyuk V V, Gutierrez R, Dianat A, Mujica V and Cuniberti G 2018 J. Phys. Chem. Lett. 9 5453
[22] Liu F 2023 Coshare Science 01 v3 p1-62
[23] Hu G C, Miao Y Y and Timm C 2022 Phys. Rev. B 106 144309
[24] Miao Y Y, Li D, Zhang H Q, Ren J F and Hu G C 2023 Phys. Chem. Chem. Phys. 25 7763
[25] Miao Y Y, Zhang H Q, Ma H, Li H X, Ren J F and Hu G C 2024 Phys. Rev. B 109 014314
[26] Nuccio L, Willis M, Schulz L, Fratini S, Messina F, D’Amico M, Pratt F L, Lord J S, McKenzie I, Loth M, Purushothaman B, Anthony J, Heeney M, Wilson R M, Hernández I, Cannas M, Sedlak K, Kreouzis T, Gillin W P, Bernhard C and Drew A J 2013 Phys. Rev. Lett. 110 216602
[27] Xu F, Li B, Pan H and Zhu J L 2007 Phys. Rev. B 75 085431
[28] Fallah F and Esmaeilzadeh M 2011 AIP Adv. 1 032113
[29] Vetter E, VonWald L, Yang S J, Yan L, Koohfar S, Kumah D, Yu Z G, You W and Sun D 2020 Phys. Rev. Mater. 4 085603
[30] Sierra M A, Sanchez D, Gutierrez R, Cuniberti G, Dominguez-Adame F and Diaz E 2019 Biomolecules 10 49
[31] Baronas P, Komskis R, Tankeleviciu Te E, Adomenas P, Adomeniene O and Jursenas S 2021 J. Phys. Chem. Lett. 12 6827
[32] Gutierrez R, Dáz E, Naaman R and Cuniberti G 2012 Phys. Rev. B 85 081404
[33] Jana M K, Song R, Liu H, Khanal D R, Janke S M, Zhao R, Liu C, Valy Vardeny Z, Blum V and Mitzi D B 2020 Nat. Commun. 11 4699
[34] Naderi F and Hasanirokh K 2020 Prog. Theor. Exp. Phys. 2020 073I01
[35] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[36] Wang X F and Chakraborty T 2006 Phys. Rev. B 74 193103
[37] Xie S J, Ahn K H, Smith D L, Bishop A R and Saxena A 2003 Phys. Rev. B 67 125202
[38] Miao Y Y, Qiu S, Zhang G P, Wang C K, Ren J F and Hu G C 2021 Physica E 131 114729
[39] Hu G C, Zuo M Y, Li Y, Ren J F and Xie S J 2014 Appl. Phys. Lett. 104 033302
[40] Fang Z, Liu Z L and Yao K L 1994 Phys. Rev. B 49 3916
[41] Hu G C, Guo Y, Wei J H and Xie S J 2007 Phys. Rev. B 75 165321
[42] Landauer R 2006 Philos. Mag. 21 863
[43] Datta S 1995 Electronic Transport in Mesoscopic Systems (New York: Oxford University Press)
[44] Paulsson M, Brandbyge M 2007 Phys. Rev. B 76 115117
[45] Zuo M Y, Hu G C, Li Y, Ren J F and Wang C K 2014 Chin. Phys. B 23 087306
[46] Lei J, Li H, Yin S and Xie S J 2008 J. Phys.: Condens. Matter 20 095201
[1] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航),. Chin. Phys. B, 2024, 33(6): 068502.
[2] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[3] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[4] Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕). Chin. Phys. B, 2024, 33(1): 017305.
[5] Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal—antiferromagnet—normal junctions
Ruigang Li(李锐岗), Jun-Feng Liu(刘军丰), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017304.
[6] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[7] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[8] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[9] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[10] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[11] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[12] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[13] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[14] Phonon dichroism in proximitized graphene
Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(10): 106301.
[15] Perspectives of spin-valley locking devices
Lingling Tao(陶玲玲). Chin. Phys. B, 2023, 32(10): 107306.
No Suggested Reading articles found!