INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions |
Maoyang Li(李茂洋)1,3, Chaochao Mo(莫超超)2, Peiyu Ji(季佩宇)3,4, Xiaoman Zhang(张潇漫)1,3, Jiali Chen(陈佳丽)6, Lanjian Zhuge(诸葛兰剑)5, Xuemei Wu(吴雪梅)1,3, Haiyun Tan(谭海云)1,3,‡, and Tianyuan Huang(黄天源)1,3,† |
1 School of Physical Science and Technology, Soochow University, Suzhou 215000, China; 2 Suzhou Maxwell Technologies Co., Ltd., Suzhou 215000, China; 3 Jiangsu Key Laboratory of Frontier Material Physics and Devices, Suzhou 215000, China; 4 School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215000, China; 5 Analysis and Testing Center, Soochow University, Suzhou 215000, China; 6 School of Optical and Electronic Information, Suzhou City University & Suzhou Key Laboratory of Biophotonics, Suzhou 215104, China |
|
|
Abstract We deposited indium-tin-oxide (ITO) films on silicon and quartz substrates by magnetron sputtering technology in pure argon. Using electrostatic quadrupole plasma diagnostic technology, we investigate the effects of discharge power and discharge pressure on the ion flux and energy distribution function of incidence on the substrate surface, with special attention to the production of high-energy negative oxygen ions, and elucidate the mechanism behind its production. At the same time, the structure and properties of ITO films are systematically characterized to understand the potential effects of high energy oxygen ions on the growth of ITO films. Combining with the kinetic property analysis of sputtering damage mechanism of transparent conductive oxide (TCO) thin films, this study provides valuable physical understanding of optimization of TCO thin film deposition process.
|
Received: 10 May 2024
Revised: 03 July 2024
Accepted manuscript online: 15 July 2024
|
PACS:
|
81.15.Cd
|
(Deposition by sputtering)
|
|
52.70.-m
|
(Plasma diagnostic techniques and instrumentation)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
Fund: This work was supported by the National Key R&D Program of China (Grant No. 2022YFE03050001) and the National Natural Science Foundation of China (Grant Nos. 12175160 and 12305284). |
Corresponding Authors:
Tianyuan Huang, Haiyun Tan
E-mail: tyhuang@suda.edu.cn;hytan@suda.edu.cn
|
Cite this article:
Maoyang Li(李茂洋), Chaochao Mo(莫超超), Peiyu Ji(季佩宇), Xiaoman Zhang(张潇漫), Jiali Chen(陈佳丽), Lanjian Zhuge(诸葛兰剑), Xuemei Wu(吴雪梅), Haiyun Tan(谭海云), and Tianyuan Huang(黄天源) Exploring negative ion behaviors and their influence on properties of DC magnetron sputtered ITO films under varied power and pressure conditions 2024 Chin. Phys. B 33 108102
|
[1] Haschke J, Dupré O, Boccard M and Ballif C 2018 Solar Energy Mater. Solar Cells 187 140 [2] Shen W Z, Zhao Y X and Liu F 2022 Front. Energy 17 9 [3] Chavan G T, Kim Y, Khokhar M Q, Hussain S Q, Cho E C, Yi J, Ahmad Z, Rosaiah P and Jeon C W 2023 Nanomaterials 13 1226 [4] Nunomura S, Sakata I and Matsubara K 2018 Phys. Rev. Appl. 10 054006 [5] Le A H T, Dao V A, Pham D P, Kim S, Dutta S, Thi Nguyen C P, Lee Y, Kim Y and Yi J 2019 Solar Energy Mater. Solar Cells 192 36 [6] Liu K, Chen B, Yu Z S J, Wu Y L, Huang Z T, Jia X H, Li C, Spronk D, Wang Z J, Wang Z G, Qu S C, Holman Z C and Huang J S 2022 J. Mater. Chem. A 10 1343 [7] Linss V, Bivour M, Iwata H and Ortner K 2019 AIP Conf. Proc. 2147 040009 [8] Macias-Montero M, Garcia-Garcia F J, Alvarez R, Gil-Rostra J, Gonzalez J C, Cotrino J, Gonzalez-Elipe A R and Palmero A 2012 J. Appl. Phys. 111 054312 [9] Mrvaz S and Schneider J M 2006 J. Appl. Phys. 100 023503 [10] Street R, Biegelsen D and Stuke J 1979 Philos. Mag. B 40 451 [11] Ishibashi S, Higuchi Y, Ota Y and Nakamura K 1990 J. Vac. Sci. Technol. A 8 1403 [12] Konishi T and Ohdaira K 2017 Thin Solid Films 635 73 [13] Caudevilla D, García-Hemme E, San Andrés E, Pérez-Zenteno F, Torres I, Barrio R, García-Hernansanz R, Algaidy S, Olea J, Pastor D and del Prado A 2022 Mater. Sci. Semiconduct. Process. 137 106189 [14] Tominaga K, Iwamura S, Fujita I, Shintani Y and Tada O 1982 Jpn. J. Appl. Phys. 21 999 [15] Mráz S and Schneider J M 2006 Appl. Phys. Lett. 89 051502 [16] Welzel T and Ellmer K 2011 Surf. Coat. Technol. 205 S294 [17] Huang T, Mo C, Cui M, Li M, Ji P, Tan H, Zhang X, Zhuge L and Wu X 2024 Vacuum 221 112848 [18] Pokorny P, Miyina M, Bulír J, Lančok J, Fitl P, Musil J and Novotny M 2011 Plasma Process. Polym. 8 459 [19] Welzel T, Naumov S and Ellmer K 2011 J. Appl. Phys. 109 073302 [20] Mahieu S, Leroy W P, Van Aeken K and Depla D 2009 J. Appl. Phys. 106 093302 [21] Seeger S, Harbauer K and Ellmer K 2009 J. Appl. Phys. 105 053305 [22] Zeuner M, Neumann H, Zalman J and Biederman H 1998 J. Appl. Phys. 83 5083 [23] Tominaga K and Kikuma T 2001 J. Vac. Sci. Technol. A 19 1582 [24] Welzel T and Ellmer K 2012 J. Vac. Sci. Technol. A 30 061306 [25] Bowes M, Poolcharuansin P and Bradley J W 2013 J. Phys. D: Appl. Phys. 46 045204 [26] Mišina M, Bradley J W, Bäcker H, Aranda-Gonzalvo Y, Karkari S K and Forder D 2002 Vacuum 68 171 [27] Lee C and Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368 [28] Huang M, Hameiri Z, Aberle A G and Mueller T 2015 Vacuum 121 187 [29] Lei H, Ichikawa K, Hoshi Y, Wang M, Uchida T and Sawada Y 2010 Thin Solid Films 518 2926 [30] Zhao M J, Zhang J F, Huang Q H, Wu W Y, Tseng M C, Lien S Y and Zhu W Z 2022 Vacuum 196 110762 [31] Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang S C I, Shen Y and Tong Y 2013 Sci. Rep. 3 1021 [32] Lei F, Sun Y, Liu K, Gao S, Liang L, Pan B and Xie Y 2014 J. Am. Chem. Soc. 136 6826 [33] Zhao L, Zhou Z, Peng H and Cui R 2005 Appl. Surf. Sci. 252 385 [34] Sezemsky P, Burnat D, Kratochvil J, Wulff H, Kruth A, Lechowicz K, Janik M, Bogdanowicz R, Cada M, Hubicka Z, Niedziałkowski P, Białobrzeska W, Stranak V and Smietana M 2021 Sens. Actuators B 343 130173 [35] Huang M, Liu Y S, He Z B and Yi Y 2022 Chin. Phys. B 31 066101 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|