Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 063402    DOI: 10.1088/1674-1056/ac4cc3
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance

Rong Zhang(张蓉)1, Yong-Chang Han(韩永昌)1,2,†, Shu-Lin Cong(丛书林)1, and Maksim B Shundalau2,3
1 Department of Physics, Dalian University of Technology, Dalian 116024, China;
2 DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China;
3 Physics Department, Belarusian State University, Minsk, Belarus
Abstract  The effect of collision energy on the magnetically tuned $^{6}$Li-$^{6}$Li Feshbach resonance (FR) is investigated theoretically by using the coupled-channel (CC) method for the collision energy ranging from 1 μ$ {\rm K} \cdot {k}_{\rm B}$ to 100 μ$ {\rm K} \cdot {k}_{\rm B}$. At the collision energy of 1 μ$ {\rm K} \cdot {k}_{\rm B}$, the resonance positions calculated are 543.152 Gs (s wave, the unit $1 {\rm Gs}=10^{-4} {\rm T}$), 185.109 Gs (p wave $|m_{l}| = 0$), and 185.113 Gs (p wave $|m_{l}| = 1$), respectively. The p-wave FR near 185 Gs exibits a doublet structure of 4 mGs, associated with dipole-dipole interaction. With the increase of the collision energy, it is found that the splitting width remains the same (4 mGs), and that the resonance positions of s and p waves are shifted to higher magnetic fields with the increase of collision energy. The variations of the other quantities including the resonance width and the amplitude of the total scattering section are also discussed in detail. The thermally averaged elastic rate coefficients at $T=10$, 15, 20, 25 K are calculated and compared.
Keywords:  Feshbach resonance      collision energy      6Li-6Li system  
Received:  05 December 2021      Revised:  17 January 2022      Accepted manuscript online:  19 January 2022
PACS:  34.50.-s (Scattering of atoms and molecules)  
  34.50.Cx (Elastic; ultracold collisions)  
  34.80.Bm (Elastic scattering)  
Fund: The project was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306503), the National Natural Science Foundation of China (Grant Nos. 21873016 and 12174044), the International Cooperation Fund Project of DBJI (Grant No. ICR2105), and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK08).
Corresponding Authors:  Yong-Chang Han     E-mail:  ychan@dlut.edu.cn

Cite this article: 

Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance 2022 Chin. Phys. B 31 063402

[1] Anderson M H, Ensher J R, Matthews M R and Wieman C E 1995 Science 269 198
[2] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[3] Fazal R, Li J Z, Chen Z W, Qin Y, Lin Y Y, Zhang Z X, Zhang S C, Huang W, Yan H and Zhu S L 2020 Chin. Phys. Lett. 37 036701
[4] Ma Z, Han C, Jiang X, Fang R, Qiu Y, Zhao M, Huang J, Lu B and Lee C 2021 Chin. Phys. Lett. 38 103701
[5] Cooper N R and Hadzibabic Z 2010 Phys. Rev. Lett. 104 030401
[6] Chen Q, Wang J, Sun L and Yu Y 2020 Chin. Phys. Lett. 37 053702
[7] Wang J B, Pan J S, Cui X L and Yi W 2020 Chin. Phys. Lett. 37 076701
[8] Patra A, Altshuler B L and Yuzbashyan E A 2019 Phys. Rev. A 100 023418
[9] Jau Y Y, Post A B, Kuzma N N, Braun A M, Romalis M V and Happer W 2004 Phys. Rev. Lett. 92 110801
[10] Zhou P P, Chen S L, Liang S Y, Sun W, Sun H Y, Huang Y, Guan H and Gao K L 2020 Chin. Phys. Lett. 37 093701
[11] Borgh M O and Ruostekoski J 2012 Phys. Rev. Lett. 109 015302
[12] Guo X T, Yu Y M, Liu Y, Suo B B and Sahoo B K 2021 Phys. Rev. A 103 013109
[13] Cong M Y, Yang B, Chen J S, Hong F, Yang S Q, Deng W Q and Han K L 2020 J. Phys. Chem. Lett. 11 1921
[14] Koch C P, Lemeshko M and Sugny D 2019 Rev. Mod. Phys. 91 035005
[15] Shu C C, Hong Q Q, Guo Y and Henriksen N E 2020 Phys. Rev. A 102 063124
[16] Nawaz K S, Chen L C, Mi C D, Meng Z M, Huang L H, Wang P J and Zhang J 2020 Phys. Rev. A 102 053326
[17] Du M, Zhang D and Ding D 2021 Chin. Phys. Lett. 38 123201
[18] Cozijn F M J, Dupré P, Salumbides E J, Eikema K S E and Ubachs W 2018 Phys. Rev. Lett. 120 153002
[19] Dür W and Van den Nest M 2011 Phys. Rev. Lett. 107 170402
[20] Zhang Z J, Liu T H, Fu B N, Yang X M and Zhang D H 2016 Nat. Commun. 7 11953
[21] Wang X L, Zheng Y J and Yang H 2020 Chem. Phys. Lett. 740 137043
[22] Carr L D, DeMille D, Krems R V and Ye J 2009 New. J. Phys. 11 055049
[23] Greene C H, Giannakeas P and Pérez-Ríos J 2017 Rev. Mod. Phys. 89 035006
[24] O’Rourke M J and Hutzler N R 2019 Phys. Rev. A 100 022502
[25] Wang K P, Zhuang J, He X D, Guo R J, Sheng C, Xu P, Liu M, Wang J and Zhan M S 2020 Chin. Phys. Lett. 37 044209
[26] Lan Z H, Zhao Y K, Barker P F and Lu W P 2010 Phys. Rev. A 81 013419
[27] Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004
[28] Egorov D, Lahaye T, Schöllkopf W, Friedrich B and Doyle J M 2002 Phys. Rev. A 66 043401
[29] Dutta S, Sawant R and Rangwala S A 2017 Phys. Rev. Lett. 118 113401
[30] Doyle J, Friedrich B, Krems R V and Masnou-Seeuws F 2004 Eur. Phys. J. D 31 149
[31] Green A, Hui J, Toh S, Richard R, Li M, Kotochigova S and Gupta S 2019 Phys. Rev. A 98 022707
[32] Manolopoulos D E 1986 J. Chem. Phys. 85 6425
[33] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[34] Timmermans E, Tommasini P, Hussein M S and Kerman A 1999 Phys. Rep. 315 199
[35] Agosta C C, Silvera I F, Stoof H T C and Verhaar B J 1989 Phys. Rev. Lett. 62 2361
[36] Fano U and Cooper J W 1965 Phys. Rev. 137 A1364
[37] Zhang S B, Xie X T and Wang J G 2017 Phys. Rev. A 96 053420
[38] Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H and Pfeifer T 2013 Science 340 716
[39] Zhang S B, Wang J G and Janev R K 2010 Phys. Rev. Lett. 104 023203
[40] Yang Y K, Cheng Y J, Wu Y, Qu Y Z, Wang J G,and Zhang S B 2020 New J. Phys. 22 123022
[41] Limonov M F, Rybin M V, Poddubny A N and Kivshar Y S, 2017 Nat. Photonics 11 543
[42] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[43] Yamaguchi A, Uetake S, Hashimoto D, Doyle J M and Takahashi Y 2011 Phys. Rev. Lett. 101 233002
[44] Traverso A, Chakraborty R, Martinez de Escobar Y N, Mickelson P G, Nagel S B, Yan M and Killian T C 2009 Phys. Rev. A 79 060702
[45] Leung S Y, Tolk N H, Heiland W, Tully J C, Kraus J S and Hill P 1978 Phys. Rev. A 18 447
[46] Blatt S, Nicholson T L, Bloom B J, Williams J R, Thomsen J W, Julienne P S and Ye J 2011 Phys. Rev. Lett. 107 073202
[47] Wang G R, Xie T and Zhang W 2012 Phys. Rev. A 85 032706
[48] Tiecke T G, Goosen M R and Walraven J T M 2010 Phys. Rev. A 82 042712
[49] Ye Z X, Xie L Y, Guo Z, Ma X B, Wang G R, You L and Tey M K 2020 Phys. Rev. A 102 033307
[50] Bartenstein M, Altmeyer A, Riedl S, Geursen R, Jochim S, Chin C, Hecker Denschlag J, Grimm R, Simoni A, Tiesinga E, Williams C J and Julienne P S 2005 Phys. Rev. Lett. 94 103201
[51] Strecker K E, Patridge G B and Hulet R G 2003 Phys. Rev. Lett. 91 080406
[52] van Abeelen F A and Verhaar B J 1999 Phys. Rev. Lett. 83 1550
[53] Yurovsky V A and Ben-Reuven A 2003 Phys. Rev. A 67 043611
[54] Schunck C H, Zwierlein M W, Stan C A and Raupach S M F 2005 Phys. Rev. A 71 045601
[55] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Chin C, Hecker Denschlag J and Grimm R 2003 Phys. Rev. Lett. 91 240402
[56] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
[57] Lompe T, Ottenstein T B, Serwane F, Viering K, Wenz A N, Kohnen M, Zürn G and Jochim S 2010 Phys. Rev. Lett. 105 103201
[58] Ferrier-Barbut I, Delehaye M, Laurent S, Grier A T, Pierce M, Rem B S, Chevy F and Salomon C 2014 Science 345 1035
[59] Li J, Liu J, Luo L and Gao B 2018 Phys. Rev. Lett. 120 193402
[60] Gerken M, Tran B, Häfner S, Tiemann E, Zhu B and Weidemüuller M 2019 Phys. Rev. A. 100 050701
[61] Li L H, Hai Y, Lyu B K, Wang G R and Cong S L 2021 J. Phys. B: At. Mol. Opt. Phys. 54 115201
[62] Wang K D, Wang Y W, Xue L, Liu Y F and Sun J F 2020 J. Phys. B: At. Mol. Opt. Phys. 53 065201
[63] Strauss C, Takekoshi T, Lang F, Winkler K, Grimm R and Denschlag J H 2010 Phys. Rev. A 82 052514
[64] Julienne P S and Hutson J M 2014 Phys. Rev. A 89 052715
[1] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[2] A combined system for generating a uniform magnetic field and its application in the investigation of Efimov physics
Rui Yao(姚睿), Zhen-Dong Sun(孙震东), Shu-Yu Zhou(周蜀渝), Ying Wang(王颖), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2018, 27(1): 016703.
[3] Electric-field-modified Feshbach resonances in ultracold atom-molecule collision
Dong Cheng(程冬), Ya Li(李亚), Eryin Feng(凤尔银), Wuying Huang(黄武英). Chin. Phys. B, 2017, 26(1): 013402.
[4] Two-color laser modulation of magnetic Feshbach resonances
Li Jian (李健), Liu Yong (刘勇), Huang Yin (黄寅), Cong Shu-Lin (丛书林). Chin. Phys. B, 2015, 24(8): 080308.
[5] Radio-frequency spectroscopy of weakly bound molecules in ultracold Fermi gas
Huang Liang-Hui (黄良辉), Wang Peng-Jun (王鹏军), Fu Zheng-Kun (付正坤), Zhang Jing (张靖). Chin. Phys. B, 2014, 23(1): 013402.
[6] The effect of collision energy on the stereo-dynamics of the reaction H(2S)+NH(X3-, v=0, j=0)→N(4S)+H2
He Di (何缔), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Jiang Zhi-Jun (姜志军). Chin. Phys. B, 2013, 22(6): 068201.
[7] Theoretical prediction of the optimal conditions for observing the stereodynamical vector properties of the C(3P)+OH (X2∏)→CO(X1S+)+H(2S) reaction
Wang Yuan-Peng (王远鹏), Zhao Mei-Yu (赵美玉), Yao Shun-Huai (姚舜怀), Song Peng (宋朋), Ma Feng-Cai (马凤才). Chin. Phys. B, 2013, 22(12): 128201.
[8] Feshbach resonances in an ultracold mixture of 87Rb and 40K
Wang Peng-Jun(王鹏军), Fu Zheng-Kun(付正坤), Chai Shi-Jie(柴世杰), and Zhang Jing(张靖) . Chin. Phys. B, 2011, 20(10): 103401.
[9] Controlling the amplitude of soliton in agrowing Bose--Einstein condensate by means of Feshbach resonance
He Zhang-Ming(何章明), Wang Deng-Long(王登龙), Zhang Wei-Xi(张蔚曦), Wang Feng-Jiao(王凤姣), and Ding Jian-Wen(丁建文). Chin. Phys. B, 2008, 17(10): 3640-3643.