Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 026601    DOI: 10.1088/1674-1056/abc158
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface

Chun-Bao Qi(戚春保)1, Tao Wang(王涛)1,†, Ru-Song Li(李如松)2, Jin-Tao Wang(王金涛)1, Ming-Ao Qin(秦铭澳)1, and Si-Hao Tao(陶思昊)1
1 Xi'an Research Institute of High Technology, Xi'an 710025, China; 2 Xi'an Jiaotong University, Xi'an 710049, China
Abstract  First principles calculation is performed to study the co-adsorption behaviors of O2 and CO2 on δ -Pu(100) surface by using a slab model within the framework of density functional theory (DFT). The results demonstrate that the most favorable co-adsorption configurations are T v-C4O7 and T p1-C2O8, with adsorption energy of -17.296 eV and -23.131 eV for CO2-based and O2-based system, respectively. The C and O atoms mainly interact with the Pu surface atoms. Furthermore, the chemical bonding between C/O and Pu atom is mainly of ionic state, and the reaction mechanism is that C 2s, C 2p, O 2s, and O 2p orbitals overlap and hybridize with Pu 6p, Pu 6d, and Pu 5f orbital, resulting in the occurrence of new band structure. The adsorption and dissociation of CO2 molecule are obviously promoted by preferentially occupying adsorbed O atoms, therefore, a potential CO2 protection mechanism for plutonium-based materials is that in CO2 molecule there occurs complete dissociation of CO\(_2\to \)C+O+O, then the dissociated C atom combines with O atom from O2 dissociation and produces CO, which will inhibit the O2 from further oxidizing Pu surface, and slow down the corrosion rate of plutonium-based materials.
Keywords:  adsorption energy      density functional theory      electron density      reaction mechanism  
Received:  15 August 2020      Revised:  12 October 2020      Accepted manuscript online:  15 October 2020
PACS:  66.30.-h (Diffusion in solids)  
  65.40.gh (Work functions)  
  68.35.-p (Solid surfaces and solid-solid interfaces: structure and energetics)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Corresponding Authors:  Corresponding author. E-mail: wtao009@163.com   

Cite this article: 

Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊) First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface 2021 Chin. Phys. B 30 026601

1 Haschke J M, Hodges A E and Lucas R L 1987 J. Less-Common. Met. 133 155
2 S Méot-Reymond and Fournier J M 1996 J. Alloys Compd. 232 119
3 Almeida T, Cox L E, Ward J W and Naegele J R 1993 Surf. Sci. s287 141
4 Stakebake J L, Larson D T and Haschke J M 1993 J. Alloys Compd. 202 251
5 Oetting F L 1967 Chem. Rev. 67 261
6 Haschke J M and Ricketts T E 1997 J. Alloys Compd. 252 148
7 Eriksson O and Cox L E 1991 Phys. Rev. B 43 4590
8 Huda M N and Ray A K 2005 Physica B 366 95
9 Huda M N and Ray A K 2004 Eur. Phys. J. B 40 337
10 Huda M N and Ray A K 2005 Eur. Phys. J. B 43 131
11 Huda M N and Ray A K 2004 Physica B 352 5
12 Li G, Lai X C and Sun Y 2005 Acta Phys.-Chim. Sin. 21 686 (in Chinese)
13 Li G, Lai X C and Sun Y 2005 J. Atom. Mol. Phys. 02 365 (in Chinese)
14 Atta-Fynn R and Ray A 2007 Phys. Rev. B 75 5112
15 Atta-Fynn R and Ray A K 2007 Physica B 400 307
16 Meng D Q, Luo W H, Li G and Chen H C 2009 Acta Phys. Sin. 12 8224 (in Chinese)
17 Luo W H, Meng D Q, Li G and Chen H C 2008 Acta Phys. Sin. 57 160 (in Chinese)
18 Wang J and Ray A K 2014 J. Comput. Theor. Nanosci. 11 1710
19 Atta-Fynn R and Ray A K 2009 Eur. Phys. J. B 70 171
20 Wei H Y, Song H T, Xiong X L, Wang G Q, Hu R and Luo S Z 2009 Comput. Appl. Chem. 26 913 (in Chinese)
21 Guo J J, Liu G P and Wei H Y 2013 Comput. Appl. Chem. 30 605 (in Chinese)
22 Li R S, He B, Xu P, Zhao F T and W F 2014 Atom. Energ. Sci. Technol. 48 43 (in Chinese)
23 Kresse G and Furthm\"uller J 1996 Phys. Rev. B 54 11169
24 Hohenberg P and Kohn W 1964 Phys. Rev. 136 864
25 Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
26 Blochl P E 1994 Phys. Rev. B 50 17953
27 Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
28 Huang G Y, Wang C Y and Wang J T 2009 J. Phys.: Condens. Matter 21 345802
29 Sui P F, Dai J Q, Zhao Y C and Dai Z H 2019 Chin. Phys. B 27 097311
30 Wang D W, Wang C Y, Yu T and Liu W Q 2020 Chin. Phys. B 29 043103
31 Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R and Singh D J 1992 Phys. Rev. B 46 6671
32 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
33 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
34 Payne M C, Teter M P, Allan D C and Arias A 1992 Rev. Mod. Phys. 64 1045
35 Lide D R 2003 Crc. Press. 257 423
36 Ogren and Paul J 2002 J. Chem. Educ. 79 117
37 Li G, Luo W H and Chen H C 2011 Acta Phys.-Chim. Sin. 10 2319 (in Chinese)
38 Qi C B, Wang T, Wang J T, Tao S H and Qin M A2020 Rare. Metal. Mat. Eng. (accepted, manuscript number: 20200477)
39 Qi C B, Wang T, Wang J T, Qin M A and Tao S H2020 Roy. Soc. Open. Sci.(under review, manuscript number: RSOS-201395)
40 Li G, Sun Y, Wang X L, Gao T and Zhu Z H 2003 Acta Phys.-Chim. Sin. 4 356
41 Green D W and Reedy G T 1978 Chem. Inform. 69 544
42 Haire R G 1994 J. Alloy. Compd. s213-214 185
43 Fu Y B, Wang X L and Zhu Z H 2000 Eng. Sci. 2 59 (in Chinese)
44 Henkelman G, Amaldsson A and Jonsson H 2006 Comp. Mater. Sci. 36 354
45 Hao Y G, Eriksson O, Fernando G W and Cooper B R 1993 Phys. Rev. B 47 6680
46 Wei H Y, Hu R, Xiong X L, Wang G Q, Song H T and Luo S Z 2010 J. Mol. Sci. 01 44 (in Chinese)
47 Wang X L, Fu Y B and Xie R S 1999 Atom. Energ. Sci. Technol. 33 2 (in Chinese)
48 Liu K Z, Yu Y, Zou J S, Wu S, Wang X L and Fu Y B 1999 Chin. Nucl. Sci. Technol. Rep. 00 881 (in Chinese)
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
No Suggested Reading articles found!