Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058201    DOI: 10.1088/1674-1056/ad2a72
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study

Shuai Peng(彭率)1,2, Li-Juan Chen(陈丽娟)1, Chang-Chun He(何长春)1, and Xiao-Bao Yang(杨小宝)1,2,†
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510000, China;
2 Center of Excellence for Advanced Materials, Dongguan 523808, China
Abstract  Combining the first-principles calculations and structural enumeration with recognition, the delithiation process of LiNiO$_{2}$ is investigated, where various supercell shapes are considered in order to obtain the formation energy of Li$_{x}$NiO$_{2}$. Meanwhile, the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4, 2/5, 3/7, 1/2, 2/3, 3/4, 5/6, and 6/7 are predicted. To understand the capacity decay in the experiment during the charge/discharge cycles, deoxygenation and Li/Ni antisite defects are calculated, revealing that the chains of oxygen vacancies will be energetically preferrable. It can be inferred that in the absence of oxygen atom in high delithiate state, the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced.
Keywords:  Li-ion battery      ground state      formation energy      oxygen vacancy      Li/Ni antisite  
Received:  19 December 2023      Revised:  09 February 2024      Accepted manuscript online:  19 February 2024
PACS:  82.47.Aa (Lithium-ion batteries)  
  63.20.dk (First-principles theory)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
Fund: Project supported by the Science Fund of the Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2019B030302011) and the Fund of the Science and Technology Program of Guangzhou, China (Grant No. 202201010090).
Corresponding Authors:  Xiao-Bao Yang     E-mail:  scxbyang@scut.edu.cn

Cite this article: 

Shuai Peng(彭率), Li-Juan Chen(陈丽娟), Chang-Chun He(何长春), and Xiao-Bao Yang(杨小宝) Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study 2024 Chin. Phys. B 33 058201

[1] Dunn B, Kamath H and Tarascon J M 2011 Science 334 928
[2] Goodenough J B 2014 Energy Environ. Sci. 7 14
[3] Seong W M and Manthiram A 2021 Energy Storage Materials 34 250
[4] Mock M, Bianchini M, Fauth F, Albe K and Sicolo S 2021 J. Mater. Chem. A 9 14928
[5] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y and Cho J 2015 Angew. Chem. Int. Ed. 54 4440
[6] Li J, Downie L E, Ma L, Qiu W and Dahn J R 2015 J. Electrochem. Soc. 162 A1401
[7] Bak S M, Hu E, Zhou Y, Yu X, Senanayake S D, Cho S J, Kim K B, Chung K Y, Yang X Q and Nam K W 2014 ACS Appl. Mater. Interfaces 6 22594
[8] Min K, Kim K, Jung C, Seo S W, Song Y Y, Lee H S, Shin J and Cho E 2016 Journal of Power Sources 315 111
[9] Kowalski P M, Bornhake T, Cheong O, Dohrmann N, Koch Liston A L, Potts S K, Shad A, Tesch R and Ting Y Y 2023 Front. Energy Res. 10 1096190
[10] Spotnitz R and Franklin J 2003 Journal of Power Sources 113 81
[11] Bandhauer T M, Garimella S and Fuller T F 2011 J. Electrochem. Soc. 158 R1
[12] Wang L, Maxisch T and Ceder G 2007 Chem. Mater. 19 543
[13] Min K, Seo S W, Song Y Y, Lee H S and Cho E 2017 Phys. Chem. Chem. Phys. 19 1762
[14] Kang K, Meng Y S, Bréger J, Grey C P and Ceder G 2006 Science 311 977
[15] Guilmard M 2003 Journal of Power Sources 115 305
[16] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[17] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[18] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
[19] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[20] Blöchl P E 1994 Phys. Rev. B 50 17953
[21] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Wang L, Maxisch T and Ceder G 2006 Phys. Rev. B 73 195107
[23] Jain A, Hautier G, Moore C J, Ping Ong S, Fischer C C, Mueller T and Persson K A, Ceder G 2011 Comput. Mater. Sci. 50 2295
[24] He C C, Liao J H, Qiu S B, Zhao Y J and Yang X B 2021 Comput. Mater. Sci. 193 110386
[25] Cen Y J, He C C, Qiu S B, Zhao Y J and Yang X B 2022 Phys. Rev. Mater. 6 L050801
[26] Stefan Maintz, Volker L. Deringer, Andrei L. Tchougreeff and Richard Dronskowski 2016 J. Comput. Chem. 37 1030
[27] Arroyo y de Dompablo M E, Van der Ven A and Ceder G 2002 Phys. Rev. B 66 064112
[28] Das H, Urban A, Huang W and Ceder G 2017 Chem. Mater. 29 7840
[29] Aydinol M K, Kohan A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[30] Liu L, He C C, Zeng J, Peng Y H, Chen W Y, Zhao Y J and Yang X B 2021 J. Phys. Chem. C 125 7077
[1] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[2] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[3] Magnetic ground state of plutonium dioxide: DFT+U calculations
Yue-Fei Hou(侯跃飞), Wei Jiang(江伟), Shu-Jing Li(李淑静), Zhen-Guo Fu(付振国), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(2): 027103.
[4] Degradation mechanism of high-voltage single-crystal LiNi0.5Co0.2Mn0.3O2 cathode material
Na Liu(柳娜). Chin. Phys. B, 2023, 32(12): 128202.
[5] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[6] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[7] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[10] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[11] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[12] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[13] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[14] Neutron-based characterization techniques for lithium-ion battery research
Enyue Zhao(赵恩岳), Zhi-Gang Zhang(张志刚), Xiyang Li(李西阳), Lunhua He(何伦华), Xiqian Yu(禹习谦), Hong Li(李泓), Fangwei Wang(王芳卫). Chin. Phys. B, 2020, 29(1): 018201.
[15] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
No Suggested Reading articles found!