|
|
Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise |
Yong-Ge Yang(杨勇歌)1, Yun Meng(孟运)1, Yuan-Hui Zeng(曾远辉)1, and Ya-Hui Sun(孙亚辉)1,2,† |
1 School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China; 2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China |
|
|
Abstract Because of the increasing demand for electrical energy, vibration energy harvesters (VEHs) that convert vibratory energy into electrical energy are a promising technology. In order to improve the efficiency of harvesting energy from environmental vibration, here we investigate a hybrid VEH. Unlike previous studies, this article analyzes the stochastic responses of the hybrid piezoelectric and electromagnetic energy harvesting system with viscoelastic material under narrow-band (colored) noise. Firstly, a mass-spring-damping system model coupled with piezoelectric and electromagnetic circuits under fundamental acceleration excitation is established, and analytical solutions to the dimensionless equations are derived. Then, the formula of the amplitude-frequency responses in the deterministic case and the first-order and second-order steady-state moments of the amplitude in the stochastic case are obtained by using the multi-scales method. The amplitude-frequency analytical solutions are in good agreement with the numerical solutions obtained by the Monte Carlo method. Furthermore, the stochastic bifurcation diagram is plotted for the first-order steady-state moment of the amplitude with respect to the detuning frequency and viscoelastic parameter. Eventually, the influence of system parameters on mean-square electric voltage, mean-square electric current and mean output power is discussed. Results show that the electromechanical coupling coefficients, random excitation and viscoelastic parameter have a positive effect on the output power of the system.
|
Received: 28 February 2023
Revised: 06 April 2023
Accepted manuscript online: 17 May 2023
|
PACS:
|
02.50.-r
|
(Probability theory, stochastic processes, and statistics)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.40.Ca
|
(Noise)
|
|
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12002089 and 11902081), the Science and Technology Projects in Guangzhou (Grant Nos. 202201010326 and 2023A04J1323), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833). |
Corresponding Authors:
Ya-Hui Sun
E-mail: yahsun@163.com
|
Cite this article:
Yong-Ge Yang(杨勇歌), Yun Meng(孟运), Yuan-Hui Zeng(曾远辉), and Ya-Hui Sun(孙亚辉) Dynamic responses of an energy harvesting system based on piezoelectric and electromagnetic mechanisms under colored noise 2023 Chin. Phys. B 32 090201
|
[1] Tuoi T T K, Toan N V and Ono T 2022 Appl. Energy 311 118679 [2] Prajwal K T, Manickavasagam K and Suresh R 2022 Eur. Phys. J. Special Top. 231 1359 [3] Jiang C M, Li X J, Lian S W M, Ying Y, Ho J S and Ping J F 2021 ACS Nano 15 9328 [4] Ren Z W, Wu L T, Pang Y K, Zhang W Q and Yang R S 2022 Nano Energy 100 107522 [5] Manthiram A 2009 Energy Harvesting Technologies: Materials for High-energy Density Batteries (New York: Springer) pp. 365-385 [6] Roundy S and Wright P K 2004 Smart Mater. Struct. 13 1131 [7] Ooi B L and Gilbert J M 2014 Sens. Actuators A 213 9 [8] Karami A, Basset P and Galayko D 2015 J. Phys.: Conf. Ser. 660 012025 [9] Ibrahim A, Ramini A and Towfighian S 2020 Energy Rep. 6 2490 [10] Challa V R, Prasad M G and Fisher F T 2009 Smart Mater. Struct. 18 095029 [11] Karami M A and Inman D J 2011 J. Sound Vib. 330 5583 [12] Li P, Gao S Q and Cai H T 2015 Microsyst. Technol. 21 401 [13] Mokem F I S, Nono D B C, Siewe S M and Tchawoua C 2018 Commun. Nonlinear Sci. Numer. Simul. 56 177 [14] Fan K Q, Tan Q X, Liu H Y, Zhu Y M, Wang W D and Zhang D X 2018 Smart Mater. Struct. 27 085001 [15] Sun Y H, Yang Y G, Zhang Y and Xu W 2021 Chaos 31 013111 [16] Rong H W, Xu W and Fang T 1998 J. Sound Vib. 210 483 [17] Liu D, Xu Y and Li J L 2017 Chaos Solitons Fractals 104 806 [18] Jin Y F and Zhang Y X 2021 Acta Mech. 232 1045 [19] Huang Z L and Jin X L 2009 J. Sound Vib. 319 1121 [20] Xiao S M and Jin Y F 2017 Nonlinear Dyn. 90 2069 [21] Zhang Y X, Jin Y F and Xu P F 2020 Int. J. Mech. Sci. 172 105418 [22] Zhu H T and Guo S S 2015 J. Vib. Acoust. 137 041015 [23] Shi T T, Xu X M, Sun K H, Ding Y P and Huang G W 2020 Chin. Phys. B 29 050501 [24] Lin B W, Wang Y H and Qian Y H 2022 Eur. Phys. J. Plus 137 459 [25] Su M, Xu W and Zhang Y 2021 Eur. Phys. J. Plus 136 271 [26] Jiang W A, Ma X D, Han X J, Chen L Q and Bi Q S 2020 Chin. Phys. B 29 100503 [27] Burstein A H and Frankel V H 1968 Ann. New York Acad. Sci. 146 158 [28] Zhou X Q, Yu D Y, Shao X Y, Zhang S Q and Wang S 2016 Compos. Struct. 136 460 [29] Fan R P, Meng G, Yang J and He C C 2009 J. Sound Vib. 319 58 [30] Cortés F and Elejabarrieta M J 2007 Mater. Design 28 2054 [31] Gröhlich M, Lang A, Bswald M and Meier J 2021 Mater. Design 207 109885 [32] Xu Y, Li Y G and Liu D 2014 J. Comput. Nonlinear Dyn. 9 031015 [33] Guo S L, Yang Y G and Sun Y H 2021 Chaos Solitons Fractals 151 111231 [34] Wu S T 2011 Acta Math. Sci. 31 1436 [35] Xu W, Rong H W and Fang T 2003 Appl. Math. Mech. 24 61 [36] Floris C 2011 Mech. Res. Commun. 38 57 [37] Denoël V 2018 Probab. Engin. Mech. 53 66 [38] Yang Y G, Huang M L, Guo S L and Sun Y H 2023 Mech. Syst. Signal Process. 186 109837 [39] Yang Y G, Guo S L and Sun Y H 2022 Eur. Phys. J. Plus 137 1091 [40] Yang Y G, He L L, Zeng Y H, Sun Y H and Xu W 2022 Int. J. Nonlinear Mech. 147 104230 [41] Zeng Y H, Yang Y G, Sun Y H and Zhang Y 2022 Machines 10 1108 [42] Erturk A and Inman D J 2011 Piezoelectric Energy Harvesting: Modeling and Exploiting Mechanical Nonlinearities in Piezoelectric Energy Harvesting (New York: John Wiley and Sons) pp. 233-271 [43] Sarker M R, Julai S, Sabri M F M, Said S M, Islam M M and Tahir M 2019 Sens. Actuators A 300 111634 [44] Iqbal M, Malik M N, Khan F, Abas P E, Cheok Q, Iqbal A and Aissa B 2020 Int. J. Energy Res. 45 1 [45] Karami M A and Inman D J 2011 J. Sound Vib. 330 5583 [46] Tran N, Ghayesh M H and Arjomandi M 2018 Int. J. Engin. Sci. 127 162 [47] Harne R L and Wang K W 2013 Smart Mater. Struct. 22 023001 [48] Zhao X R, Xu W, Gu X D and Yang Y G 2015 Physica A 431 128 [49] Liu Q, Xu Y and Kurths J 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105184 [50] Li D X, Xu W, Yue X L and Lei Y M 2012 Nonlinear Dyn. 70 2237 [51] Wedig W V 1990 Struct. Safety 8 13 [52] Holmes M H 2013 Introduction to Perturbation Methods: Multiple Scales (New York: Springer) pp. 139-221 [53] Han Q, Xu W and Sun J Q 2016 Physica A 458 115 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|