Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 043101    DOI: 10.1088/1674-1056/abd167

Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption

Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪)
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
Abstract  The effects of Sm doping into CuInTe2 chalcopyrite on the cohesive energy before and after light absorption are systematically investigated by the empirical electron theory (EET) of solids and molecules. The results show that the static energy of CuIn1-xSmxTe2 decreases with Sm content increasing due to the valence electronic structure modulated by doping Sm into CuIn1-xSmxTe2. The calculated optical absorption transition energy from the static state to the excited energy level in CuIn1-xSmxTe2 accords well with the experimental absorption bandgap of CuIn1-xSmxTe2. Moreover, it is found that the energy bandgap of CuIn1-xSmxTe2 is significantly widened with Sm content increasing due to its special valent electron structure, which is favorable for enhancing the light absorption in a wider range and also for the potential applications in solar cells.
Keywords:  CuIn1-xSmxTe2      empirical electron theory (EET)      light absorption bandgap      hybridization energy  
Received:  19 October 2020      Revised:  27 November 2020      Accepted manuscript online:  08 December 2020
PACS:  31.15.bu (Semi-empirical and empirical calculations (differential overlap, Hückel, PPP methods, etc.))  
  61.72.uj (III-V and II-VI semiconductors)  
  42.70.Qs (Photonic bandgap materials)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Tai Wang(王泰), Yong-Quan Guo(郭永权), and Cong Wang(王聪) Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption 2021 Chin. Phys. B 30 043101

1 Chiker F, Abbar B, Tadjer A, Bresson S, Khelifa B and Mathieu C 2004 Physica B: Condens. Matter 349 181
2 Kopytov A V and Kosobutsky A V 2009 Phys. Solid State 51 2115
3 Sahin S, Ciftci Y O, Colakoglu K and Korozlu N 2012 J. Alloys Compd. 529 1
4 Liu H T, Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M and He Q 2007 Chin. Phys. B 16 788
5 Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y and Huang M 2014 Chin. Phys. B 23 077301
6 Wang T, Guo Y Q, Wang C and Yang S W 2020 J. Magn. Magn. Mater. 502 166506
7 Bodnar I V, Gurin V S, Solovei N P and Molochko A P 2007 Semiconductors 41 939
8 Fu L and Guo Y Q 2014 Chin. Phys. B 23 127801
9 Mobarak M and Shaban H T 2014 Mater. Chem. Phys. 147 439
10 Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W and Powalla M2016 Phys. Status Solidi 10 583
11 Yang K J, Son D H, Sung S J, Sim J H, Kim Y I, Park S N, Jeon D H, Kim J, Hwang D K, Jeon C W, Nam D, Cheong H, Kang J K and Kim D H 2016 J. Mater. Chem. A 4 10151
12 Nie X M and Guo Y Q 2015 J. Solid State Chem. 233 211
13 Li S and Guo Y Q2016 Presented at the 2nd Annual International Conference on Advanced Material Engineering (AME 2016), (unpublished)
14 Wang T, Han J P and Guo Y Q2017 Advanced Materials and Energy Sustainability, eds. Chen J I and Li Q (Singapore: Word Scientific) pp. 150-155
15 Wang T, Guo Y Q and Li S 2017 Chin. Phys. B 26 103101
16 Mitzi D B, Copel M and Murray C E 2006 Adv. Mater. 18 2448
17 Shahroosvand H and Ghorbani-Asl M 2013 J. Lumin. 144 223
18 Arai T, Timmerman D, Wakamatsu R, Lee D G and Koizumi A 2015 J. Lumin. 158 70
19 Lü Z J and Wang S K 1979 Chin. Sci. Bull. 24 742
20 Guo Y Q, Yü R H, Zhang R, Zhang X and Tao K 1998 J. Phys. Chem. B 102 9
21 Li Z, Xu H and Gong S 2004 J. Phys. Chem. B 108 15165
22 Wu W X, Guo Y Q, Li A H and Li W 2008 Acta Phys. Sin. 57 2486 (in Chinese)
23 Zhang R L, Wu S and Yü R L1988 Sci. China Ser. A 31 1487
24 Liu Z L, Li Z L and Liu W D 2001 Sci. China Ser. E 44 542
25 Guo Y Q, Su T, Zhang J, Wang X Q, Chen Y and Zhao X 2020 ACS Appl. Energy Mater. 3 5361
26 Zhang A M, Zhao Z, Yin G and Lin C 2017 Comput. Mater. Sci. 140 61
27 Li S, Zhao D, Wang H, Zhang Y, Huang W and Zhou Y2020 Mater. Chem. Phys. 249
28 Yü R H 1978 Chin. Sci. Bull. 23 217
29 Zhang R L1993 The Empirical Electron Theory of Solids and Molecules (Changchun: Jilin Science and Technology Press)(in Chinese)
30 Elizalde-Galindo J T, Rivera Gòmez F J, Matutes-Aquino J A and Botez C E2008 J. Magn. Magn. Mater. 320 e58
31 Meng Z H, Fu L, Mei J and Guo Y Q2013 Scientia Sinica Physica, Mechanica & Astronomica 43 275
32 Meng Z H, Li J B, Guo Y Q and Wang Y 2012 Acta Phys. Sin. 61 107101 (in Chinese)
33 Wang S K and Lv Z J 1981 Chin. Sci. Bull. 26 217
34 Qian C F, Chen X F, Yü R H, Gend P and Duan Z Q 1997 Sci. China Ser. A 40 308
35 Lin C, Huang S X, Yin G L, Zhang A M, Zhao Z W and Zhao Y Q 2016 Comput. Mater. Sci. 123 263
36 Bhattacharya R N and Rajeshwar K 1986 Solar Cell 16 237
37 Nie X M and Guo Y Q2015 Adv. Mater. Res. 1094 218
[1] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[2] Correlation between electronic structure and energy band in Eu-doped CuInTe2 semiconductor compound with chalcopyrite structure
Tai Wang(王泰), Yong-Quan Guo(郭永权), Shuai Li(李帅). Chin. Phys. B, 2017, 26(10): 103101.
[3] Magic wavelengths for the 7s1/2-6d3/2,5/2 transitions in Ra+
Xiao-Mei Wu(吴晓梅), Cheng-Bin Li(李承斌), Yong-Bo Tang(唐永波), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(9): 093101.
[4] Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method
Tang Yong-Bo (唐永波), Li Cheng-Bin (李承斌), Qiao Hao-Xue (乔豪学). Chin. Phys. B, 2014, 23(6): 063101.
No Suggested Reading articles found!