Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107103    DOI: 10.1088/1674-1056/ad6a0b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase induced localization transition

Tong Liu(刘通)1, Xingbo Wei(魏兴波)2,†, and Youguo Wang(王友国)1,‡
1 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Department of Physics and Key Laboratory of Optical Field Manipulation of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  Localization phenomenon is an important research field in condensed matter physics. However, due to the complexity and subtlety of disordered systems, new localization phenomena always emerge unexpectedly. For example, it is generally believed that the phase of the hopping term does not affect the localization properties of the system, so the calculation of the phase is often ignored in the study of localization. Here, we introduce a quasiperiodic model and demonstrate that the phase change of the hopping term can significantly alter the localization properties of the system through detailed numerical simulations, such as the inverse participation ratio and multifractal analysis. This phase-induced localization transition provides valuable information for the study of localization physics.
Keywords:  phase      localization      quasiperiodic  
Received:  31 May 2024      Revised:  17 July 2024      Accepted manuscript online:  01 August 2024
PACS:  71.23.Ft (Quasicrystals)  
  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.23.An (Theories and models; localized states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071248), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ24A040004), Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY223109), and China Postdoctoral Science Foundation (Grant No. 2022M721693).
Corresponding Authors:  Xingbo Wei, Youguo Wang     E-mail:  weixingbo@zstu.edu.cn;wangyg@njupt.edu.cn

Cite this article: 

Tong Liu(刘通), Xingbo Wei(魏兴波), and Youguo Wang(王友国) Phase induced localization transition 2024 Chin. Phys. B 33 107103

[1] Qi X and Zhang S 2011 Rev. Mod. Phys. 83 1057
[2] Kitaev A 2001 Phys. Usp. 44 131
[3] Anderson P 1958 Phys. Rev. 109 1492
[4] Ivanov D 2001 Phys. Rev. Lett. 86 268
[5] Biddle J and Das Sarma S 2010 Phys. Rev. Lett. 104 070601
[6] Jin L and Song Z 2019 Phys. Rev. B 99 081103(R)
[7] Liu T and Cheng S 2023 Chin. Phys. B 32 027102
[8] Hofstadter D 1976 Phys. Rev. B 14 2239
[9] Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 18
[10] Harper P 1955 Proc. Phys. Soc. London Sect. A 68 874
[11] Jimenez-Garcia K, LeBlanc L, Williams R, Beeler M, Perry A and Spielman I 2012 Phys. Rev. Lett. 108 225303
[12] Zhou L and Han W 2021 Chin. Phys. B 30 100308
[13] Liu T, Guo H, Pu Y and Longhi S 2020 Phys. Rev. B 102 024205
[14] Yao H, Khouldi H, Bresque L and Sanchez-Palencia L 2019 Phys. Rev. Lett. 123 070405
[15] Liu T and Xia X 2024 Chin. Phys. Lett. 41 017102
[16] Cai X, Lang L, Chen S and Wang Y 2013 Phys. Rev. Lett. 110 176403
[17] Wei X, Gao X and Zhu W 2022 Phys. Rev. B 106 134207
[18] Wei X, Cheng C, Gao X and Mondaini R 2019 Phys. Rev. B 99 165137
[19] Chiu C, Teo J, Schnyder A and Ryu S 2016 Rev. Mod. Phys. 88 035005
[20] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[21] Lang L, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401
[22] Liu Y, Zhou Q and Chen S 2021 Phys. Rev. B 104 024201
[23] Gonçalves M, Amorim B, Castro E and Ribeiro P 2023 Phys. Rev. Lett. 131 186303
[24] Liu T, Xia X, Longhi S and Sanchez-Palencia L 2022 SciPost Phys. 12 027
[25] Wei X, Wu L, Feng K, Liu T and Zhang Y 2024 Phys. Rev. A 109 023314
[26] Cai X 2022 Phys. Rev. B 106 214207
[27] Liu T, Cheng S, Zhang R, Ruan R and Jiang H 2022 Chin. Phys. B 31 027101
[28] Hiramoto H and Kohmoto M 1989 Phys. Rev. B 40 8225
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[3] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[4] Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling
Qingbang Han(韩庆邦), Zhipeng Liu(刘志鹏), Cheng Yin(殷澄), Simeng Wu(吴思梦), Yinlong Luo(罗寅龙), Zixin Yang(杨子鑫), Xiuyang Pang(庞修洋), Yiqiu Wang(王溢秋), Xuefen Kan(阚雪芬), Yuqiu Zhang(张雨秋), Qiang Yu(俞强), and Jian Wu(吴坚). Chin. Phys. B, 2024, 33(9): 094301.
[5] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[6] Deformation and mutual influence of two cylindrical water columns in tandem subjected to shock wave
Zhen-Yu Hong(洪振宇), Yang Song(宋洋), Rui Wang(王睿), Zong-Qiang Ma(马宗强), Dong-Jun Ma(马东军), and Pei Wang (王裴). Chin. Phys. B, 2024, 33(8): 084702.
[7] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[8] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[9] Topological phases and edge modes of an uneven ladder
Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Chin. Phys. B, 2024, 33(8): 080202.
[10] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[11] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[12] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[13] Internal phase control of fiber laser array based on photodetector array
Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴). Chin. Phys. B, 2024, 33(7): 074201.
[14] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[15] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
No Suggested Reading articles found!