Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074203    DOI: 10.1088/1674-1056/ad3b85
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Multi-functional photonic spin Hall effect sensor controlled by phase transition

Jie Cheng(程杰)1,†, Rui-Zhao Li(李瑞昭)1, Cheng Cheng(程骋)2, Ya-Lin Zhang(张亚林)1, Sheng-Li Liu(刘胜利)1, and Peng Dong(董鹏)3,‡
1 School of Science, Jiangsu Province Engineering Research Center of Low Dimensional Physics and New Energy, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Electrical Engineering, Research Center of Intelligent Sensor and Network Engineering Technology of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
Abstract  Photonic spin Hall effect (PSHE), as a novel physical effect in light-matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index (RI). In this work, we propose a multi-functional PSHE sensor based on VO$_{2}$, a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO$_{2}$ can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO$_{2}$ is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO$_{2}$ is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO$_{2}$ is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO$_{2}$ layers, which is very simple and elegant. Therefore, the proposed VO$_{2}$-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
Keywords:  photonic spin Hall effect      multi-functional sensors      phase transition      sensing performance  
Received:  01 February 2024      Revised:  03 April 2024      Accepted manuscript online:  07 April 2024
PACS:  42.40.My (Applications)  
  42.25.-p (Wave optics)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. NSFC 12175107), the Natural Science Foundation of Nanjing Vocational University of Industry Technology, China (Grant No. YK22-02-08), the Qing Lan Project of Jiangsu Province, China; the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No.KYCX23 0964), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20230347), and the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province, China (Grant No. ZK21-05-09).
Corresponding Authors:  Jie Cheng, Peng Dong     E-mail:  chengj@njupt.edu.cn;2021101298@niit.edu.cn

Cite this article: 

Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏) Multi-functional photonic spin Hall effect sensor controlled by phase transition 2024 Chin. Phys. B 33 074203

[1] Kazanskiy N L, Khonina S N and Butt M A 2020 Physica E 117 113798
[2] Uniyal A, Srivastava G, Pal A, Taya S and Muduli A 2023 Plasmonics 18 735
[3] Zanchetta G, Lanfranco R, Giavazzi F, Bellini T and Buscaglia M 2017 Nanophotonics 6 627
[4] Khalil M A, Yong W H, Hoque A, Isam M S, Chiong L Y, Leei C C, Albadran S, Soliman M S and Islam M T 2023 Eng. Sci. Technol. 48 101582
[5] Ansari G, Pal A, Srivastava A K and Verma G 2023 Opt. Laser Technol. 164 109495
[6] Eddin F B K, Fen Y W, Liew J Y C and Daniyal W M E M M 2022 Biosensors 12 1124
[7] Jian A J, Zou L, Bai G, Duan Q Q, Zhang Y X, Zhang Q W, Sang S B and Zhang X M 2019 J. Lightwave Technol. 37 2800
[8] Hassan M F, Sagor R H, Amin M R, Islam M R and Alam M S 2021 IEEE Sens. J. 21 17749
[9] Zhao Y, Yang C X, Zhu J X, Lin F, Fang Z Y and Zhu X 2020 Chin. Phys. B 29 067301
[10] Yu X T, Wang X, Li Z, Zhao L T, Zhou F F, Qu J L and Song J 2021 Nanophotonics 10 3031
[11] Onoda M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 9 083901
[12] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H and Zoller P 2017 Nature 541 473
[13] Srivastava T, Chitriv S, Sahu S, Gorai P and Jha R 2022 J. Appl. Phys. 132 203103
[14] Wu F, She Y C, Cheng Z M, Wu J J, Qi X, Wei Q, Xiao S Y, Sun Y, Jiang H T and Chen H 2023 Physica B 670 415348
[15] Wu F, Liu T T, Long Y, Xiao S Y and Chen G Y 2023 Phys. Rev. B 107 165428
[16] Zhang J, Zhou S, Dai X, Huang M and Yu X 2023 Opt. Express 31 6062
[17] Cheng J, Xiang Y J, Xu J H, Liu S L and Dong P 2022 IEEE Photon. J. 22 12754
[18] Kim M, Lee D, Kim Y and Rho J 2022 Nanophotonics 11 4591
[19] Xie L G, Qiu X D, Luo L, Liu X, Li Z X, Zhang Z Y, Du J L and Wang D Q 2017 Appl. Phys. Lett. 111 191106
[20] Lin S, Hong J A, Chen Z H, Chen Y and Zhou X X 2022 Opt. Express 30 4096
[21] Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 Phys. Rev. Appl. 13 01405
[22] Sui J Y, Xu J, Liang A W, Zhou J H, Wu C Q, Zhang T H and Zhang H F 2023 Sensors 23 4747
[23] Sui J Y, Zou J H, Liao S Y, Li B X and Zhang H F 2023 Appl. Phys. Lett. 122 231105
[24] Morin F J 1959 Phys. Rev. Lett. 3 34
[25] Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383
[26] Li D S, Sharma A A, Gala D K, Shukla N, Paik H, Datta S, Schlom D G, Bain J A and Skowronski M 2016 ACS Appl. Mater. Interfaces. 8 12908
[27] Currie M, Mastro M A and Wheeler V D 2017 Opt. Mater. Express 7 1697
[28] Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C and Fan D Y 2011 Phys. Rev. A 84 033801
[29] Zhan T R, Shi X, Dai Y Y, Liu X H and Zi J 2013 J. Phys.: Condens. Matter 25 215301
[30] Pan M M, Li Y, Ren J L, Wang B, Xiao Y F, Yang H and Gong Q H 2013 Appl. Phys. Lett. 103 071106
[31] Yang W, Ang L K, Zhang W, Han J G and Xu Y 2023 Opt. Express 31 27041
[32] Ahlawat L, Kishor K and Sinha R K 2024 Opt. Laser Technol. 170 110183
[33] Singh R R, Kumari S, Gautam A and Priye G 2018 IEEE. J. Sel. Top. Quantum Electron. 25 7300608
[34] Rakhshani M R 2019 J. Opt. Soc. Am. B 36 2834
[35] Sani M H and Khosroabadi S 2020 IEEE Sens. J. 20 7161
[36] Novais S, Ferreira C I A, Ferreira M S and Pinto J L 2018 IEEE Photon. J. 10 6803609
[37] Natesan A, Govindasamy K P, Gopal T R, Dhasarathan V and Aly A H 2019 IET Optoelectron. 13 117
[38] Askari A and Hosseini M V 2020 J. Opt. Soc. Am. B 13 2712
[39] Anwar S and Khan M 2023 Eur. Phys. J. E 46 19
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[3] First-principles study on stability and superconductivity of ternary hydride LaYHx(x=2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[4] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[5] Surface phonon resonance: A new mechanism for enhancing photonic spin Hall effect and refractive index sensor
Jie Cheng(程杰), Chenglong Wang(汪承龙), Yiming Li(李一铭), Yalin Zhang(张亚林), Shengli Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(8): 084201.
[6] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[7] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[8] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[9] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[10] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[11] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[12] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[13] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[14] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[15] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
No Suggested Reading articles found!