Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070702    DOI: 10.1088/1674-1056/ad4328
GENERAL Prev   Next  

Physical information-enhanced graph neural network for predicting phase separation

Yaqiang Zhang(张亚强)1, Xuwen Wang(王煦文)1, Yanan Wang(王雅楠)1, and Wen Zheng(郑文)1,2,3,†
1 Institute of Public-Safety and Big Data, College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Jinzhong 030600, China;
2 Shanxi Engineering Research Centre for Intelligent Data Assisted Treatment, Changzhi Medical College, Changzhi 046000, China;
3 Innovation Academy for Microsatellites of Chinese Academy of Sciences, Shanghai 200050, China
Abstract  Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here, we present a physical information-enhanced graph neural network (PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers. The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems.
Keywords:  graph neural network      phase separation      machine learning      dissipative particle dynamics  
Received:  03 March 2024      Revised:  08 April 2024      Accepted manuscript online:  25 April 2024
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  64.75.Gh (Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.))  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
  87.64.Aa (Computer simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11702289) and the Key Core Technology and Generic Technology Research and Development Project of Shanxi Province, China (Grant No. 2020XXX013).
Corresponding Authors:  Wen Zheng     E-mail:  zhengwen@tyut.edu.cn

Cite this article: 

Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文) Physical information-enhanced graph neural network for predicting phase separation 2024 Chin. Phys. B 33 070702

[1] Fletcher P D, Howe A M and Robinson B H 1987 Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 83 985
[2] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301
[3] Tung C, Harder J, Valeriani C and Cacciuto A 2016 Soft Matter 12 555
[4] Richard D, Löwen H and Speck T 2016 Soft Matter 12 5257
[5] Baumgart T, Hammond A T, Sengupta P, Hess S T, Holowka D A, Baird B A and Webb W W 2007 Proc. Nat. Acad. Sci. USA 104 3165
[6] Chong P A and Forman-Kay J D 2016 Current Opinion in Structural Biology 41 180
[7] Zola R S, Evangelista L, Yang Y C and Yang D K 2013 Phys. Rev. Lett. 110 057801
[8] Bažec M and Žumer S 2006 Phys. Rev. E 73 021703
[9] Jeon Y, Jamil M, Lee H D and Rhee J 2008 Pramana 71 559
[10] Connell S D and Smith D A 2006 Molecular Membrane Biology 23 17
[11] Girelli A, Rahmann H, Begam N, Ragulskaya A, Reiser M, Chandran S, Westermeier F, Sprung M, Zhang F, Gutt C, et al. 2021 Phys. Rev. Lett. 126 138004
[12] Novik K E and Coveney P V 2000 Phys. Rev. E 61 435
[13] Shimizu R and Tanaka H 2015 Nat. Commun. 6 7407
[14] Das K and Das S K 2023 Phys. Rev. E 107 044116
[15] Gidituri H, Akella V, Vedantam S and Panchagnula MV 2019 J. Chem. Phys. 150 234903
[16] Laradji M, Mouritsen O G, Toxvaerd S and Zuckermann M J 1994 Phys. Rev. E 50 1243
[17] Ahmad S, Das S K and Puri S 2012 Phys. Rev. E 85 031140
[18] Perlmutter J D and Sachs J N 2011 Biophys. J. 100 491a
[19] Warren P B 1998 Current Opinion in Colloid & Interface Science 3 620
[20] Cai H, Vernon R M and Forman-Kay J D 2022 Biomolecules 12 1131
[21] Zhang P and Chern G W 2021 Phys. Rev. Lett. 127 146401
[22] Lopez C A, Vesselinov V V, Gnanakaran S and Alexandrov B S 2019 J. Chem. Theory Comput. 15 6343
[23] Chang Y C, Chen Y J, Chen P Y, Chen Y C, Maqbool F, Ho T Y and Chiang Y Y 2023 ACS Appl. Mater. Interfaces 15 12473
[24] Mandal R, Casert C and Sollich P 2022 Nat. Commun. 13 4424
[25] Chu X, Sun T, Li Q, Xu Y, Zhang Z, Lai L and Pei J 2022 BMC Bioinformatics 23 72
[26] Noe F, Tkatchenko A, Müller K R and Clementi C 2020 Annu. Rev. Phys. Chem. 71 361
[27] Zhang K, Li X, Jin Y and Jiang Y 2022 Soft Matter 18 6270
[28] Boattini E, Smallenburg F and Filion L 2021 Phys. Rev. Lett. 127 088007
[29] Mokhtar F, Kansal R, Diaz D, Duarte J M, Pata J, Pierini M and Vli mant J R 2021 arXiv:2111.12840v1
[physics.data-an]
[30] Shen Z A, Luo T, Zhou Y K, Yu H and Du P F 2021 Briefings in Bioinformatics 22 bbab051
[31] Ha S and Jeong H 2021 Sci. Rep. 11 12804
[32] Wang R, Fang F, Cui J and Zheng W 2022 Sci. Rep. 12 500
[33] Zhao H, Wang R, Zhao C and Zheng W 2023 Chin. Phys. B 32 056402
[34] Liu Y, Wang R, Zhao C and Zheng W 2022 Chin. Phys. B 31 116401
[35] Sanchez-Gonzalez A, Godwin J, Pfaff T, Ying R, Leskovec J and Battaglia P 2020 Proceedings of the 37th International Conference on Machine Learning, July 13-18, 2020, Virtual, p. 8459
[36] Bapst V, Keck T, Grabska-Barwińska A, Donner C, Cubuk E D, Schoenholz S S, Obika A, Nelson A W, Back T, Hassabis D, et al. 2020 Nat. Phys. 16 448
[37] Shiba H, Hanai M, Suzumura T and Shimokawabe T 2023 J. Chem. Phys. 158 084503
[38] Groot R D and Warren P B 1997 J. Chem. Phys. 107 4423
[39] Visser D, Hoefsloot H C and Iedema P D 2006 J. Comput. Phys. 214 491
[40] Zhao Y, Liu H, Lu Z Y and Sun C C 2008 Chin. J. Chem. Phys. 21 451
[1] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[2] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[3] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[4] Prediction of impurity spectrum function by deep learning algorithm
Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮). Chin. Phys. B, 2024, 33(5): 057102.
[5] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[6] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[7] Computing large deviation prefactors of stochastic dynamical systems based on machine learning
Yang Li(李扬), Shenglan Yuan(袁胜兰), Linghongzhi Lu(陆凌宏志), and Xianbin Liu(刘先斌). Chin. Phys. B, 2024, 33(4): 040501.
[8] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[9] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[10] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[11] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[12] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[13] Generalization properties of restricted Boltzmann machine for short-range order
M A Timirgazin and A K Arzhnikov. Chin. Phys. B, 2023, 32(6): 067401.
[14] Thermal transport properties of two-dimensional boron dichalcogenides from a first-principles and machine learning approach
Zhanjun Qiu(邱占均), Yanxiao Hu(胡晏箫), Ding Li(李顶), Tao Hu(胡涛), Hong Xiao(肖红),Chunbao Feng(冯春宝), and Dengfeng Li(李登峰). Chin. Phys. B, 2023, 32(5): 054402.
[15] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
No Suggested Reading articles found!