CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5 |
Zixian Dong(董自仙), Lei Shi(石磊), Bin Wang(王彬), Mengwu Huo(霍梦五), Xing Huang(黄星), Chaoxin Huang(黄潮欣), Peiyue Ma(马培跃), Yunwei Zhang(张云蔚)†, Bing Shen(沈冰)‡, and Meng Wang(王猛)§ |
Center for Neutron Science and Technology, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract The kagome system has attracted great interest in condensed matter physics due to its unique structure that can host various exotic states such as superconductivity (SC), charge density waves (CDWs) and nontrivial topological states. The topological semimetal RbTi$_{3}$Bi$_{5}$ consisting of a Ti kagome layer shares a similar crystal structure to the topological correlated materials $A$V$_{3}$Sb$_{5}$ ($A = {\rm K}$, Rb, Cs) but without the absence of CDW and SC. Systematic de Haas-van Alphen oscillation measurements are performed on single crystals of RbTi$_{3}$Bi$_{5}$ to pursue nontrivial topological physics and exotic states. Combining this with theoretical calculations, the detailed Fermi surface topology and band structure are investigated. A two-dimensional Fermi pocket $\beta $ is revealed with a light effective mass, consistent with the semimetal predictions. The Landau fan diagram of RbTi$_{3}$Bi$_{5}$ reveals a zero Berry phase for the $\beta $ oscillation in contrast to that of CsTi$_{3}$Bi$_{5}$. These results suggest that kagome RbTi$_{3}$Bi$_{5 }$ is a good candidate for exploring nontrivial topological exotic states and topological correlated physics.
|
Received: 21 May 2024
Revised: 18 July 2024
Accepted manuscript online: 01 August 2024
|
PACS:
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
52.70.Ds
|
(Electric and magnetic measurements)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12174454, U2130101, and 92165204), the Guangdong Basic and Applied Basic Research Funds (Grant Nos. 2024B1515020040 and 2022A1515010035), Guangzhou Basic and Applied Basic Research Funds (Grant No. 2024A04J6417), and Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No. 2022B1212010008). |
Corresponding Authors:
Yunwei Zhang, Bing Shen, Meng Wang
E-mail: zhangyunw@mail.sysu.edu.cn;shenbing@mail.sysu.edu.cn;wangmeng5@mail.sysu.ed.cn
|
Cite this article:
Zixian Dong(董自仙), Lei Shi(石磊), Bin Wang(王彬), Mengwu Huo(霍梦五), Xing Huang(黄星), Chaoxin Huang(黄潮欣), Peiyue Ma(马培跃), Yunwei Zhang(张云蔚), Bing Shen(沈冰), and Meng Wang(王猛) The de Haas-van Alphen quantum oscillations in the kagome metal RbTi3Bi5 2024 Chin. Phys. B 33 107102
|
[1] Yu S L and Li J X 2012 Phys. Rev. B 85 144402 [2] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 [3] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [4] Kong X M, Tao Z C, Zhang R, Xia W, Chen X, Pei C Y, Ying T P, Qi Y P, Guo Y F, Yang X F and Li S Y 2024 Chin. Phys. Lett. 41 047503 [5] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [6] Wu X, Schwemmer T, Müller T, Consiglio A, Sangiovanni G, Di Sante D, Iqbal Y, Hanke W, Schnyder A P, Denner M M, Fischer M H, Neupert T and Thomale R 2021 Phys. Rev. Lett. 127 177001 [7] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 [8] Hao Z Y, Cai Y Q, Liu Y X, et al. 2022 Phys. Rev. B 106 L081101 [9] Shrestha K, Chapai R, Pokharel B K, Miertschin D, Nguyen T, Zhou X, Chung D Y, Kanatzidis M G, Mitchell J F, Welp U, Popović D, Graf D E, Lorenz B and Kwok W K 2022 Phys. Rev. B 105 024508 [10] Li H, Zhao H, Ortiz B R, Park T, Ye M X, Balents L, Wang Z Q, Wilson S D and Zeljkovic I 2022 Nat. Phys. 18 265 [11] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 [12] Zhu H G, Li T R, Yu F H, Li Y L, Wang S, Wu Y B, Liu Z F, Shang Z M, Cui S T, Liu Y, Zhang G B, Zhang L D, Wang Z Y, Wu T, Ying J Y, Chen X H and Sun Z 2023 Chin. Phys. Lett. 40 047301 [13] Li L Y, Yi E K, Wang B, Yu G Q, Shen B, Yan Z B and Wang M 2023 npj Quantum Mater. 8 2 [14] Yang S Y, Wang Y, Ortiz B R, Liu D, Gayles J, Derunova E, GonzalezHernandez R, Šmejkal L, Chen Y, Parkin S S P, Wilson S D, Toberer E S, McQueen T and Ali M N 2020 Sci. Adv. 6 eabb6003 [15] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J and Chen X H 2021 Phys. Rev. B 104 L041103 [16] Song D W, Zheng L X, Yu F H, Li J, Nie L P, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Sun K L, Liu K, Luo X G, Wang Z Y, Ying J J, Wan X G, Wu T and Chen X H 2022 Sci. China Phys. Mech. 65 247462 [17] Wang Y X, Wu T, Li Z, Jiang K and Hu J P 2023 Phys. Rev. B 107 184106 [18] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z and Luo J L 2021 Chin. Phys. Lett. 38 077402 [19] Mielke C, Das D, Yin J X, et al. 2022 Nature 602 245 [20] Luo H L, Gao Q, Liu H X, et al. 2022 Nat. Commun. 13 273 [21] Im J H and Kang C J 2023 Curr. Appl. Phys. 54 26 [22] Luo Y, Han Y L, Liu J J, et al. 2023 Nat. Commun. 14 3819 [23] Ding G F, Wo H L, Gu Y Q, Gu Y M and Zhao J 2022 Phys. Rev. B 106 235151 [24] Oey Y M, Ortiz B R, Kaboudvand F, Frassineti J, Garcia E, Cong R, Sanna S, Mitrović V F, Seshadri R and Wilson S D 2022 Phys. Rev. Mater. 6 L041801 [25] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Matsui F, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G and Sato T 2022 Phys. Rev. Lett. 129 206402 [26] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F and Li S Y 2022 Phys. Rev. B 105 094507 [27] Zheng L X, Wu Z M, Yang Y, Nie L P, Shan M, Sun K L, Song D W, Yu F H, Li J, Zhao D, Li S J, Kang B L, Zhou Y B, Liu K, Xiang Z J, Ying J N, Wang Z Y, Wu T and Chen X H 2022 Nature 611 682 [28] Du F, Luo S S, Ortiz B R, Chen Y, Duan W Y, Zhang D T, Lu X, Wilson S D, Song Y and Yuan H Q 2021 Phys. Rev. B 103 L220504 [29] Yang H T, Ye Y H, Zhao Z, et al. 2022 arXiv:2211.12264 [condmat.supr-con] [30] Werhahn D, Ortiz B R, Hay A K, Wilson S D, Seshadri R and Johrendt D 2022 De Gruyter. 77 757 [31] Jiang Z C, Liu Z T, Ma H Y, Xia W, Liu Z H, Liu J S, Cho S H Y, Yang Y C, Ding J Y, Liu J Y, Huang Z, Qiao Y X, Shen J J, Jing W C, Liu X Q, Liu J P, Guo Y F and Shen D W 2023 Nat. Commun. 14 4892 [32] Li H, Cheng S Y, Ortiz B R, Tan H X, Werhahn D, Zeng K Y, Johrendt D, Yan B H, Wang Z Q, Wilson S D and Zeljkovic I 2023 Nat. Phys. 19 1591 [33] Yang J A, Yi X W, Zhao Z, et al. 2023 Nat. Commun. 14 4089 [34] Yi X W, Liao Z W, You J Y, Gu B and Su G 2023 Research 6 0238 [35] Chen X T, Liu X Q, Xia W, Mi X R, Zhong L Y, Yang K Y, Zhang L, Gan Y H, Liu Y, Wang G W, Wang A F, Chai Y S, Shen J Y, Yang X L, Guo Y F and He M Q 2023 Phys. Rev. B 107 174510 [36] Huang J X, Yamakawa Y, Tazai R, Morimoto T and Kontani H 2023 arXiv: 2305.18093 [cond-mat.str-el] [37] Rehfuss Z, Broyles C, Graf D, Li Y K, Tan H X, Zhao Z, Liu J L, Zhang Y H, Dong X L, Yang H, Gao H J, Yan B H and Ran S 2024 Phys. Rev. Mater. 8 024003 [38] Zhou Y, Chen L, Ji X C, Liu C, Liao K, Guo Z N, Wang J O, Weng H M and Wang G 2023 arXiv: 2301.01633[cond-mat.supr-con] [39] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [40] Blöchl P E 1994 Phys. Rev. B 50 17953 [41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [42] Kokalj A 1999 J. Mol. Graphics Mod. 17 176 [43] Rourke P M C and Julian S R 2012 Comput. Phys. Commun. 183 324 [44] Wang Y, Liu Y X, Hao Z Y, et al. 2023 Chin. Phys. Lett. 40 037102 [45] Shoenberg D 1984 Magnetic oscillations in metals (New York: Cambridge University press) pp. 290-312 [46] Xia W, Shi X, Wang Y, Ge W, Su H, Wang Q, Wang X, Yu N, Zou Z, Hao Y, Zhao W and Guo Y 2020 Appl. Phys. Lett. 116 142103 [47] Yi X W, Liao Z W, You J Y and Su G 2023 Research 6 0238 [48] Liu B, Kuang M Q, Luo Y, et al. 2023 Phys. Rev. Lett. 131 026701 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|