Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074201    DOI: 10.1088/1674-1056/ad47af
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Internal phase control of fiber laser array based on photodetector array

Kai-Kai Jin(靳凯凯)1, Jin-Hu Long(龙金虎)1, Hong-Xiang Chang(常洪祥)1, Rong-Tao Su(粟荣涛)1,2,3,†, Jia-Yi Zhang(张嘉怡)1, Si-Yu Chen(陈思雨)1, Yan-Xing Ma(马阎星)1,2,3, and Pu Zhou(周朴)1
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China;
3 Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China
Abstract  Coherent beam combining (CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than $\lambda /20$, and $\sim 95$% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
Keywords:  fiber laser      laser array      coherent beam combining      internal phase control  
Received:  14 March 2024      Revised:  05 April 2024      Accepted manuscript online:  06 May 2024
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Kb (Coherence)  
  42.55.Wd (Fiber lasers)  
  52.38.-r (Laser-plasma interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62275272) and the Training Program for Excellent Young Innovators of Changsha (Grant No. KQ2305025).
Corresponding Authors:  Rong-Tao Su     E-mail:  surongtao@126.com

Cite this article: 

Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴) Internal phase control of fiber laser array based on photodetector array 2024 Chin. Phys. B 33 074201

[1] Yang Y, Geng G, Li F, Huang G and Li X Y 2017 Opt. Express 25 27519
[2] Jauregui C, Limpert J and Tünnermann A 2013 Nat. Photon. 7 861
[3] Zervas M N and Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219
[4] Mourou G, Brocklesby B, Tajima T and Limpert J 2013 Nat. Photon. 7 258
[5] Shi W, Fang Q, Zhu X, Norwood R A and Peyghambarian N 2014 Appl. Opt. 53 6554
[6] Chen X, Yao T F, Huang L J, An Y, Wu H S, Pan A Y and Zhou P 2023 Adv. Funct. Mater. 5 59
[7] Li J S and Chen Y 2023 Chin. Phys. B 32 124204
[8] Xu X, Huang Y D, Zhang Z L, Liu J L, Lou J, Gao M X, Wu S Y, Fang G Y, Zhao Z X, Chen Y P, Sheng Z M and Chang C. 2023 Chin. Phys. Lett. 40 045201
[9] Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A and Fan T Y 2011 Opt. Lett. 36 2686
[10] Müller M, Aleshire C, Klenke A, Haddad E, Légar é F, Tünnermann A and Limpert J 2020 Opt. Lett. 45 3083
[11] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[12] Yang Y F, Liu H K, Zheng Y, Hu M, Liu C, Qi Y F, He B, Zhou J, Wei Y R and Lou Q H 2014 Opt. Lett. 39 708
[13] Weyrauch T, Vorontsov M, Mangano J, Ovchinnikov V, Bricker D, Polnau E and Rostov A 2016 Opt. Lett. 41 840
[14] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Chin. Phys. B 19 094202
[15] Zheng X R, Ma D N, Jiang G T, Zhang C L and Zhang L L 2023 Chin. Phys. B 32 114210
[16] Smith R G 1972 Appl. Opt. 11 2489
[17] Ke W W, Wang X J, Bao X F and Shu X J 2013 Opt. Express 21 14272
[18] Dawson J W, Messerly M J, Beach R J, Shverdin M Y and Barty C 2008 Opt. Express 16 13240
[19] Zhu J J, Zhou P, Ma Y X, Xu X J and Liu Z J 2011 Opt. Express 19 18645
[20] Jauregui C, Stihler C and Limper J 2020 Adv. Opt. Photon. 12 429
[21] Chosrowjan H, Furuse H, Fujita M, Izawa Y, Kawanaka J, Miyanaga N, Hamamoto K and Yamada T 2013 Opt. Lett. 38 1277
[22] Geng C, Tian Y, Mu J B and Li X Y 2013 Acta Phys. Sin. 62 024206 (in Chinese)
[23] Kermene V, Shpakovych M, Maulion G, Boju A, Armand P, DesfargesBerthelemot A and Barthelemy A 2021 Opt. Express 29 12307
[24] Wang D, Du Q, Zhou T, Li D and Wilcox R 2021 Opt. Express 29 5694
[25] Shay T M, Benham V, Baker J T, Sanchez A D, Pilkington D and Lu C A 2007 IEEE J. Sel. Top. Quantum Electron. 13 480
[26] Ahn H K and Kong H J 2015 Opt. Express 23 12407
[27] Long J H, Chang H X, Zhang Y Q, Hou T Y, Chang Q, Su R T, Ma Y X, Ma P F and Zhou P 2022 Opt. Laser Technol. 148 107775
[28] Long J H, Hou T Y, Chang Q, Yu T, Su R T, Ma P F, Ma Y X, Zhou P and Si L 2021 Opt. Lett. 46 3665
[29] Chang H X, Su R T, Long J H, Chang Q, Ma P F, Ma Y X and Zhou P 2022 Opt. Express 30 1089
[30] Bowman D J, King M J, Sutton A J, Wuchenich D M, Ward R L, Malikides E A, McClelland D E and Shaddock D A 2013 Opt. Lett. 38 1137
[31] Chang H X, Su R T, Zhang Y Q, Jiang M, Chang Q, Long J H, Ma P F, Ma Y X and Zhou P 2022 Front. Phys. 10 913195
[32] Kabeya D, Kermene V, Fabert M, Benoist J, Desfarges-Berthelemot A and Barthelemy A 2015 Opt. Express 23 031059
[33] Kabeya D, Kermene V, Fabert M, Benoist J, Saucourt J, Desfarges-Berthelemot A and Barthélémy A 2017 Opt. Express 25 1381
[34] Zheng Y, Wang X H, Shen F and Li X Y 2010 Opt. Express 18 26946
[35] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F and Tang W H 2022 Chin. Phys. B 31 088503
[36] Zheng Y, Wang X H, Deng L, Shen F and Li X Y 2011 Appl. Opt. 50 2239
[37] Chang Q, Hou T Y, Long J H, Deng Y, Chang H X, Ma P F, Su R T, Ma Y X and Zhou P 2022 J. Light. Technol. 40 6542
[38] Beresnev L A, Andrew Motes R, Townes K J, Marple P, Gurton K, Valenzuela A R, Williamson C, Liu J J and Washer C 2017 Appl. Opt. 5 B169
[39] Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D, Pourtal E, Canat G, Jaouen Y, Moreau B and Vasseur O 2009 IEEE J. Sel. Top. Quantum Electron. 15 257
[40] Jones D, Scott A, Clark S, Stace C and Clarke R 2004 Proc. SPIE 5335 125
[1] Wavelength-interval switchable Brillouin-Raman random fiber laser through Brillouin pump manipulation
Yang Li(李阳), En-Ming Xu(徐恩明), Rui-Jia Chen(陈睿佳), Yu-Gang Shee, and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(7): 074209.
[2] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[3] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[4] Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
H Ahmad, B Nizamani, M Z Samion, N Yusoff, and M F Ismail. Chin. Phys. B, 2023, 32(6): 064205.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[7] Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser
Lie Liu(刘列), Ying Han(韩颖), Jiayu Huo(霍佳雨), Honglin Wen(文红琳), Ge Wu(吴戈), and Bo Gao(高博). Chin. Phys. B, 2023, 32(11): 114209.
[8] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
[9] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[10] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[11] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[12] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[13] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[14] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[15] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[1] HUANG MAO (黄矛), LIU KE-LING (刘克玲). NON-BOLTZMANN ENERGY LEVEL DISTRIBUTIONS OF ARGON ATOMS IN THE INDUCTIVELY COUPLED ARGON PLASMA[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 11 -18 .
[2] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[3] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[4] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[5] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[6] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[7] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[8] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[9] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[10] DENG WEN-JI (邓文基), LIU YOU-YAN (刘有延), HUANG XIU-QING (黄秀清). ON THE LOCALIZATION OF ELECTRONIC STATES IN ONE-DIMENSIONAL QUASILATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 113 -122 .