ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Internal phase control of fiber laser array based on photodetector array |
Kai-Kai Jin(靳凯凯)1, Jin-Hu Long(龙金虎)1, Hong-Xiang Chang(常洪祥)1, Rong-Tao Su(粟荣涛)1,2,3,†, Jia-Yi Zhang(张嘉怡)1, Si-Yu Chen(陈思雨)1, Yan-Xing Ma(马阎星)1,2,3, and Pu Zhou(周朴)1 |
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; 2 Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China; 3 Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Coherent beam combining (CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than $\lambda /20$, and $\sim 95$% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system.
|
Received: 14 March 2024
Revised: 05 April 2024
Accepted manuscript online: 06 May 2024
|
PACS:
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.25.Kb
|
(Coherence)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
52.38.-r
|
(Laser-plasma interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62275272) and the Training Program for Excellent Young Innovators of Changsha (Grant No. KQ2305025). |
Corresponding Authors:
Rong-Tao Su
E-mail: surongtao@126.com
|
Cite this article:
Kai-Kai Jin(靳凯凯), Jin-Hu Long(龙金虎), Hong-Xiang Chang(常洪祥), Rong-Tao Su(粟荣涛), Jia-Yi Zhang(张嘉怡), Si-Yu Chen(陈思雨), Yan-Xing Ma(马阎星), and Pu Zhou(周朴) Internal phase control of fiber laser array based on photodetector array 2024 Chin. Phys. B 33 074201
|
[1] Yang Y, Geng G, Li F, Huang G and Li X Y 2017 Opt. Express 25 27519 [2] Jauregui C, Limpert J and Tünnermann A 2013 Nat. Photon. 7 861 [3] Zervas M N and Codemard C A 2014 IEEE J. Sel. Top. Quantum Electron. 20 219 [4] Mourou G, Brocklesby B, Tajima T and Limpert J 2013 Nat. Photon. 7 258 [5] Shi W, Fang Q, Zhu X, Norwood R A and Peyghambarian N 2014 Appl. Opt. 53 6554 [6] Chen X, Yao T F, Huang L J, An Y, Wu H S, Pan A Y and Zhou P 2023 Adv. Funct. Mater. 5 59 [7] Li J S and Chen Y 2023 Chin. Phys. B 32 124204 [8] Xu X, Huang Y D, Zhang Z L, Liu J L, Lou J, Gao M X, Wu S Y, Fang G Y, Zhao Z X, Chen Y P, Sheng Z M and Chang C. 2023 Chin. Phys. Lett. 40 045201 [9] Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A and Fan T Y 2011 Opt. Lett. 36 2686 [10] Müller M, Aleshire C, Klenke A, Haddad E, Légar é F, Tünnermann A and Limpert J 2020 Opt. Lett. 45 3083 [11] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567 [12] Yang Y F, Liu H K, Zheng Y, Hu M, Liu C, Qi Y F, He B, Zhou J, Wei Y R and Lou Q H 2014 Opt. Lett. 39 708 [13] Weyrauch T, Vorontsov M, Mangano J, Ovchinnikov V, Bricker D, Polnau E and Rostov A 2016 Opt. Lett. 41 840 [14] Wang X L, Zhou P, Ma Y X, Ma H T, Xu X J, Liu Z J and Zhao Y J 2010 Chin. Phys. B 19 094202 [15] Zheng X R, Ma D N, Jiang G T, Zhang C L and Zhang L L 2023 Chin. Phys. B 32 114210 [16] Smith R G 1972 Appl. Opt. 11 2489 [17] Ke W W, Wang X J, Bao X F and Shu X J 2013 Opt. Express 21 14272 [18] Dawson J W, Messerly M J, Beach R J, Shverdin M Y and Barty C 2008 Opt. Express 16 13240 [19] Zhu J J, Zhou P, Ma Y X, Xu X J and Liu Z J 2011 Opt. Express 19 18645 [20] Jauregui C, Stihler C and Limper J 2020 Adv. Opt. Photon. 12 429 [21] Chosrowjan H, Furuse H, Fujita M, Izawa Y, Kawanaka J, Miyanaga N, Hamamoto K and Yamada T 2013 Opt. Lett. 38 1277 [22] Geng C, Tian Y, Mu J B and Li X Y 2013 Acta Phys. Sin. 62 024206 (in Chinese) [23] Kermene V, Shpakovych M, Maulion G, Boju A, Armand P, DesfargesBerthelemot A and Barthelemy A 2021 Opt. Express 29 12307 [24] Wang D, Du Q, Zhou T, Li D and Wilcox R 2021 Opt. Express 29 5694 [25] Shay T M, Benham V, Baker J T, Sanchez A D, Pilkington D and Lu C A 2007 IEEE J. Sel. Top. Quantum Electron. 13 480 [26] Ahn H K and Kong H J 2015 Opt. Express 23 12407 [27] Long J H, Chang H X, Zhang Y Q, Hou T Y, Chang Q, Su R T, Ma Y X, Ma P F and Zhou P 2022 Opt. Laser Technol. 148 107775 [28] Long J H, Hou T Y, Chang Q, Yu T, Su R T, Ma P F, Ma Y X, Zhou P and Si L 2021 Opt. Lett. 46 3665 [29] Chang H X, Su R T, Long J H, Chang Q, Ma P F, Ma Y X and Zhou P 2022 Opt. Express 30 1089 [30] Bowman D J, King M J, Sutton A J, Wuchenich D M, Ward R L, Malikides E A, McClelland D E and Shaddock D A 2013 Opt. Lett. 38 1137 [31] Chang H X, Su R T, Zhang Y Q, Jiang M, Chang Q, Long J H, Ma P F, Ma Y X and Zhou P 2022 Front. Phys. 10 913195 [32] Kabeya D, Kermene V, Fabert M, Benoist J, Desfarges-Berthelemot A and Barthelemy A 2015 Opt. Express 23 031059 [33] Kabeya D, Kermene V, Fabert M, Benoist J, Saucourt J, Desfarges-Berthelemot A and Barthélémy A 2017 Opt. Express 25 1381 [34] Zheng Y, Wang X H, Shen F and Li X Y 2010 Opt. Express 18 26946 [35] Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F and Tang W H 2022 Chin. Phys. B 31 088503 [36] Zheng Y, Wang X H, Deng L, Shen F and Li X Y 2011 Appl. Opt. 50 2239 [37] Chang Q, Hou T Y, Long J H, Deng Y, Chang H X, Ma P F, Su R T, Ma Y X and Zhou P 2022 J. Light. Technol. 40 6542 [38] Beresnev L A, Andrew Motes R, Townes K J, Marple P, Gurton K, Valenzuela A R, Williamson C, Liu J J and Washer C 2017 Appl. Opt. 5 B169 [39] Jolivet V, Bourdon P, Bennal B, Lombard L, Goular D, Pourtal E, Canat G, Jaouen Y, Moreau B and Vasseur O 2009 IEEE J. Sel. Top. Quantum Electron. 15 257 [40] Jones D, Scott A, Clark S, Stace C and Clarke R 2004 Proc. SPIE 5335 125 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|