Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 094301    DOI: 10.1088/1674-1056/ad57ad
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling

Qingbang Han(韩庆邦)1, Zhipeng Liu(刘志鹏)1, Cheng Yin(殷澄)1,†, Simeng Wu(吴思梦)1, Yinlong Luo(罗寅龙)2, Zixin Yang(杨子鑫)2, Xiuyang Pang(庞修洋)2, Yiqiu Wang(王溢秋)1, Xuefen Kan(阚雪芬)3, Yuqiu Zhang(张雨秋)2, Qiang Yu(俞强)2,4, and Jian Wu(吴坚)2,‡
1 College of Information Science and Engineering, Hohai University, Changzhou 213200, China;
2 College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China;
3 School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China;
4 i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  Orbital angular momentum (OAM) conversion is critical in understanding interactions between a structural sound field and a planar lattice. Herein, we explore the evolution of a monochromatic acoustic vortex beam (AVB) that is scattered by a phononic crystal (PnC) or a correlated random lattice. The phenomenon is ascribed to the enhanced orbit-orbit angular momentum coupling induced by the band structure. By modifying the coupling condition, accurate and continuous micro-manipulation of AVBs can be achieved, including the transverse/lateral gravity shift, the dynamics of the phase singularities, and the spatial distribution of acoustic pressure, etc. This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes, and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation.
Keywords:  acoustic vortex beam      phononic crystal      Anderson localization      Imbert-Fedorov effect  
Received:  02 April 2024      Revised:  23 May 2024      Accepted manuscript online:  13 June 2024
PACS:  43.40.+s (Structural acoustics and vibration)  
  43.20.+g (General linear acoustics)  
  46.40.-f (Vibrations and mechanical waves)  
  46.40.Cd (Mechanical wave propagation (including diffraction, scattering, and dispersion))  
Fund: This work was supported by the National Natural Science foundation of China (Grant No. 12174085), the Fundamental Research Funds for the Central Universities (Grant No. B220202018), the Basic Science (Natural Science) Research Project for the Universities of Jiangsu Province (Grant No. 23KJD140002), and Natural Science Foundation of Nantong (Grant No. JC2023081).
Corresponding Authors:  Cheng Yin, Jian Wu     E-mail:  yinch@hhu.edu.cn;wujian15203@163.com

Cite this article: 

Qingbang Han(韩庆邦), Zhipeng Liu(刘志鹏), Cheng Yin(殷澄), Simeng Wu(吴思梦), Yinlong Luo(罗寅龙), Zixin Yang(杨子鑫), Xiuyang Pang(庞修洋), Yiqiu Wang(王溢秋), Xuefen Kan(阚雪芬), Yuqiu Zhang(张雨秋), Qiang Yu(俞强), and Jian Wu(吴坚) Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling 2024 Chin. Phys. B 33 094301

[1] Li L, Guo Y, Zhang Z, Shang Z, Li C, Wang J, Gao L, Hai L, Gao C and Fu S 2023 Adv. Photon. 5 056002
[2] Mondal PK, Deb B and Majumder S 2015 Phys. Rev. 92 043603
[3] Li X R, Jia Y R, Luo Y C, Yao J and Wu D J 2021 Appl. Phys. Lett. 118 043503
[4] Gao S, Li Y, Ma C, Cheng Y and Liu X 2021 Nat. Commun. 12 2006
[5] Bliokh K Y and Nori F 2019 Natl. Sci. Rev. 99 174310
[6] Shi C, Zhao R, Long Y, Yang S, Wang Y, Chen H, Ren J and Zhang X 2019 Natl. Sci. Rev. 6 707
[7] Zou Z, Lirette R and Zhang L 2020 Phys. Rev. Lett. 125 074301
[8] Fan S W, Wang Y F, Cao L, Zhu Y, Chen A L, Vincent B, Assouar B and Wang Y S 2020 Appl. Phys. Lett. 116 163504
[9] Zhang C, Jiang X, He J, Li Y and Ta D 2023 Adv. Sci. 10 2206619
[10] Ruan Y, Zhu J, Lin Q, Wang Y, Zhou D, Wang S, Li C, Shi J and Chen R 2024 J. Sound Vibr. 581 118380
[11] Fu Y, Tian Y, Li X, Yang S, Liu Y, Xu Y and Lu M 2022 Phys. Rev. Lett. 128 104501
[12] Jiang X, Li Y, Liang B, Cheng J and Zhang L 2016 Phys. Rev. Lett. 117 034301
[13] Wang Y and Qian J 2021 Micromachines 12 1388
[14] Gong K, Zhou X and Mo J 2022 Smart Mater. Struct. 31 115001
[15] Zhang B, Dong H and Gong J 2013 Acoust. Phys. 59 97
[16] Xu Z, Qian M L, Cheng Q and Liu X J 2016 Chin. Phys. Lett. 33 114302
[17] Yin G, Li P, Yang X, Tian Y, Han J, Ren W and Guo J 2022 Acta Acust. 6 101051
[18] Li D, Yan X, Xu Z and Ta D 2019 Ultrasonics 95 32
[19] Quan J, Sun B, Fu Y, Gao L and Xu Y 2024 Chin. Phys. Lett. 41 014301
[20] Fa L, Xue L, Fa Y, Han Y, Zhang Y, Cheng H, Ding P, Li G, Tang S, Bai C, Xi B, Zhang X and Zhao M 2017 Sci. China Phys. Mech. Astron. 60 104311
[21] Fan X and Zhang L 2021 Phys. Rev. Res. 3 013251
[22] Wang W, Liu J, Liang B and Cheng J 2022 Chin. Phys. B 31 094302
[23] Wang W, Tan Y, Liang B, Ma G, Wang S and Cheng J 2021 Phys. Rev. B 104 174301
[24] Bastawrous M V and Hussein M I 2021 J. Sound Vibr. 514 116428
[25] Jin Y, Jia XY, Wu Q Q, He X, Yu G C and Wu L Z 2022 J. Sound Vibr. 521 116721
[26] Overy A R, Simonov A, Chater P A, Tucker M G and Goodwin A L 2017 Basic Solid State Phys. 254 1600586
[27] Hu H, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A 2008 Nat. Phys. 4 945
[28] Hu R and Tian Z 2021 Phys. Rev. B 103 045304
[29] Wang J, Huo L, Liu C and Song G 2021 Struct. Health Monit. 20 2917
[30] Gao W, Zhang C, Song G and Li H N 2021 Struct. Health Monit. 20 188201
[31] De Moura F A and Lyra M L 1998 Phys. Rev. Lett. 81 3735
[1] Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals
Mohammadreza Rahimi and Ali Bahrami. Chin. Phys. B, 2024, 33(4): 044301.
[2] Ultrasonic scalpel based on fusiform phononic crystal structure
Sha Wang(王莎), Junjie Shan(单俊杰), and Shuyu Lin(林书玉). Chin. Phys. B, 2024, 33(10): 104302.
[3] Inverse design of nonlinear phononic crystal configurations based on multi-label classification learning neural networks
Kunqi Huang(黄坤琦), Yiran Lin(林懿然), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2024, 33(10): 104301.
[4] Regulating Anderson localization with structural defect disorder
Mouyang Cheng(程谋阳), Haoxiang Chen(陈浩翔), and Ji Chen(陈基). Chin. Phys. B, 2024, 33(10): 107201.
[5] Periodic electron oscillation in coupled two-dimensional lattices
Yan-Yan Lu(陆艳艳), Chao Wang(王超), Jin-Yi Jiang(将金益), Jie Liu(刘洁), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2023, 32(7): 070306.
[6] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[7] Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity
Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2023, 32(4): 044301.
[8] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[9] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[10] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[11] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[12] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[13] Energy relaxation in disordered lattice φ4 system: The combined effects of disorder and nonlinearity
Jianjin Wang(汪剑津), Yong Zhang(张勇), and Daxing Xiong(熊大兴). Chin. Phys. B, 2020, 29(12): 120503.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[15] Underwater acoustic metamaterial based on double Dirac cone characteristics in rectangular phononic crystals
Dong-Liang Pei(裴东亮), Tao Yang(杨洮), Meng Chen(陈猛), Heng Jiang(姜恒). Chin. Phys. B, 2019, 28(12): 124301.
No Suggested Reading articles found!