Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090305    DOI: 10.1088/1674-1056/ad5d94
GENERAL Prev   Next  

New approach to measuring topological phase transitions utilizing Floquet technology

Xue-Ying Yang(杨雪滢), Wei Wu(吴伟)†, and Ping-Xing Chen(陈平形)‡
College of Sciences, National University of Defense Technology, Changsha 410073, China
Abstract  The Floquet technique provides a novel anomalous topological phase for non-equilibrium phase transitions. Based on the high symmetry of the quantum anomalous Hall model, the findings suggest a one-to-one correspondence between the average spin texture and the Floquet quasi-energy spectrum. A new approach is proposed to directly measure the quasi-energy spectrum, replacing previous measurements of the average spin texture. Finally, we proposed a reliable experimental scheme based on ion trap platforms. This scheme markedly reduces the measurement workload, improves the measurement fidelity, and is applicable to multiple platforms such as cold atoms and nuclear magnetic resonance.
Keywords:  topological phase transition      Floquet technique      ion trap  
Received:  18 May 2024      Revised:  26 June 2024      Accepted manuscript online:  02 July 2024
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.50.Dv (Quantum state engineering and measurements)  
  37.10.Ty (Ion trapping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904402, 12174447, 12074433, 12004430, and 12174448).
Corresponding Authors:  Wei Wu, Ping-Xing Chen     E-mail:  weiwu@nudt.edu.cn;pxchen@nudt.edu.cn

Cite this article: 

Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形) New approach to measuring topological phase transitions utilizing Floquet technology 2024 Chin. Phys. B 33 090305

[1] Quintana M, Martín Valderrama C and Berger A 2023 Phys. Rev. E 108 064121
[2] Riego P, Vavassori P and Berger A 2017 Phys. Rev. Lett. 118 117202
[3] Park H and Pleimling M 2012 Phys. Rev. Lett. 109 175703
[4] Wilczek F 2012 Phys. Rev. Lett. 109 160401
[5] Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
[6] Keßler H, Kongkhambut P, Georges C, Mathey L, Cosme J G and Hemmerich A 2021 Phys. Rev. Lett. 127 043602
[7] Peng Y 2022 Phys. Rev. Lett. 128 186802
[8] Sadhukhan S and Ghosh S 2023 Phys. Rev. A 108 023511
[9] Sivananda D J, Roy N, Mahato P C and Banerjee S S 2020 Phys. Rev. Res. 2 043237
[10] Yoshimura T, Bidzhiev K and Saleur H 2020 Phys. Rev. B 102 125124
[11] Song T, Moreau P, Aichelin J and Bratkovskaya E 2020 Phys. Rev. C 101 044901
[12] Rudner M S and Lindner N H 2020 Nature Reviews Physics 2 229
[13] Cayssol J, Dóra B, Simon F and Moessner R 2013 Physica Status Solidi (RRL) 7 101
[14] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027
[15] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237
[16] Fläschner N, Rem B S, Tarnowski M, Vogel D, Lühmann D S, Sengstock K and Weitenberg C 2016 Science 352 1091
[17] Peng Y and Refael G 2019 Phys. Rev. Lett. 123 016806
[18] Hu H, Huang B, Zhao E and Liu W V 2020 Phys. Rev. Lett. 124 057001
[19] Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005
[20] Nathan F and Rudner M S 2015 New J. Phys. 17 125014
[21] Yao S, Yan Z and Wang Z 2017 Phys. Rev. B 96 195303
[22] Wintersperger K, Braun C, Ünal F N, Eckardt A, Liberto M D, Goldman N, Bloch I and Aidelsburger M 2020 Nat. Phys. 16 1058
[23] Zhang L, Zhang L and Liu X J 2020 Phys. Rev. Lett. 125 183001
[24] Zhang J Y, Yi C R, Zhang L, Jiao R H, Shi K Y, Yuan H, Zhang W, Liu X J, Chen S and Pan J W 2023 Phys. Rev. Lett. 130 043201
[25] Maczewsky L J, Zeuner J M, Nolte S and Szameit A 2017 Nat. Commun. 8 13756
[26] Hu W, Pillay J C, Wu K, Pasek M, Shum P P and Chong Y D 2015 Phys. Rev. X 5 011012
[27] Yi C R, Zhang L, Zhang L, Jiao R H, Cheng X C, Wang Z Y, Xu X T, Sun W, Liu X J, Chen S and Pan J W 2019 Phys. Rev. Lett. 123 190603
[28] Holthaus M 2015 J. Phys. B: Atom. Mol. Opt. Phys. 49 013001
[1] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[2] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[3] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[4] Building and characterizing a stylus ion-trap system
Tai-Hao Cui(崔太豪), Ya-Qi Wei(魏雅琪), Ji Li(李冀), Quan Yuan(袁泉), Shuang-Qing Dai(戴双晴), Pei-Dong Li(李沛东), Fei Zhou(周飞), Jian-Qi Zhang(张建奇), Zhu-Jun Zheng(郑驻军), Liang Chen(陈亮), and Mang Feng(冯芒). Chin. Phys. B, 2024, 33(4): 043701.
[5] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[6] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[7] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[8] Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏). Chin. Phys. B, 2024, 33(3): 033202.
[9] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[10] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[11] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[12] A cryogenic radio-frequency ion trap for a 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 113701.
[13] Lifetime measurement of the 3d9 2D3/2 metastable level in Mo15+ at an electron beam ion trap
Jialin Liu(刘佳林), Yintao Wang(王银涛), Bingsheng Tu(屠秉晟), Liangyu Huang(黄良玉), Ran Si(司然), Jiguang Li(李冀光), Mingwu Zhang(张明武), Yunqing Fu(傅云清), Yaming Zou(邹亚明), and Ke Yao(姚科). Chin. Phys. B, 2023, 32(10): 103201.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
No Suggested Reading articles found!