Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076102    DOI: 10.1088/1674-1056/ad3ef6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure

Xiao-Long Pan(潘小龙)1,2, Hao Wang(王豪)2, Lei Liu(柳雷)2, Xiang-Rong Chen(陈向荣)1,†, and Hua-Yun Geng(耿华运)2,3,‡
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
3 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
Abstract  Mn$_{3}$TeO$_{6}$ (MTO) has been experimentally found to adopt a $P2_1/n$ structure under high pressure, which exhibits a significantly smaller band gap compared to the atmospheric $R\bar{3}$ phase. In this study, we systematically investigate the magnetism, structural phase transition, and electronic properties of MTO under high pressure through first-principles calculations. Both $R\bar{3}$ and $P2_1/n$ phases of MTO are antiferromagnetic at zero temperature. The $R\bar{3}$ phase transforms to the $P2_1/n$ phase at 7.58 GPa, accompanied by a considerable volume collapse of about 6.47%. Employing the accurate method that combines DFT$+U$ and GW, the calculated band gap of $R\bar{3}$ phase at zero pressure is very close to the experimental values, while that of the $P2_1/n$ phase is significantly overestimated. The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the $P2_1/n$ phase instead of the Kubelka-Munk plot for the direct band gap. Furthermore, our study reveals that the transition from the $R\bar{3}$ phase to the $P2_1/n$ phase is accompanied by a slight reduction in the band gap.
Keywords:  magnetism      phase transition      band gap      high pressure  
Received:  04 January 2024      Revised:  04 April 2024      Accepted manuscript online:  16 April 2024
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  71.20.Nr (Semiconductor compounds)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2021YFB3802300), the Natural Science Foundation of China Academy of Engineering Physics (Grant Nos. U1730248 and U1830101), and the National Natural Science Foundation of China (Grant Nos. 12202418, 11872056, 11904282, 12074274, and 12174356).
Corresponding Authors:  Xiang-Rong Chen, Hua-Yun Geng     E-mail:  xrchen@scu.edu.cn;s102genghy@caep.cn

Cite this article: 

Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运) First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure 2024 Chin. Phys. B 33 076102

[1] Nechache R, Harnagea C, Licoccia S, Traversa E, Ruediger A, Pignolet A and Rosei F 2011 Appl. Phys. Lett. 98 202902
[2] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2015 Nat. Photon. 9 61
[3] Liu L, Skogby H, Ivanov S, Weil M, Mathieu R and Lazor P 2019 Chem. Commun. 55 12000
[4] Grätzel M 2014 Nat. Mater. 13 838
[5] Zhang T, Chen H, Bai Y, Xiao S, Zhu L, Hu C, Xue Q and Yang S 2016 Nano Energy 26 620
[6] Chen H, Zheng X, Li Q, Yang Y, Xiao S, Hu C, Bai Y, Zhang T, Wong K S and Yang S 2016 J. Mater. Chem. A 4 12897
[7] Meng L, You J and Yang Y 2018 Nat. Commun. 9 5265
[8] Ning C Z, Dou L and Yang P 2017 Nat. Rev. Mater. 2 17070
[9] Zhang G, Wu H, Li G, Huang Q, Yang C, Huang F, Liao F and Lin J 2013 Sci. Rep. 3 1265
[10] Arévalo-López Á M, Solana-Madruga E, Aguilar-Maldonado C, Ritter C, Mentré O and Attfield J P 2019 Chem. Commun. 55 14470
[11] Su H P, Li S F, Han Y F, Wu M X, Gui C R, Chang Y F, Croft M, Ehrlich S, Khalid S, Adem U, Dong S, Sun Y, Huang F and Li M R 2019 J. Mater. Chem. C 7 12306
[12] Liu L, Geng H Y, Pan X, Song H X, Ivanov S, Mathieu R, Weil M, Li Y, Li X and Lazor P 2022 Appl. Phys. Lett. 121 044102
[13] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[14] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[16] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[20] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301
[21] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[22] Vinet P, Ferrante J, Rose J H and Smith J R 1987 J. Geophys. Res. 92 9319
[1] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[2] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[3] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[4] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[5] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[6] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[7] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[8] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[9] Non-Kramers doublet ground state in a quaternary cubic compound PrRu2In2Zn18 investigated by ultrasonic measurements
Hua-Yuan Zhang(张化远), Kazuhei Wakiya, Mitsuteru Nakamura, Masahito Yoshizawa, and Yoshiki Nakanish. Chin. Phys. B, 2024, 33(6): 064301.
[10] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[11] Semiclassical approach to spin dynamics of a ferromagnetic S=1 chain
Chengchen Li(李承晨), Yi Cui(崔祎), Weiqiang Yu(于伟强), and Rong Yu(俞榕). Chin. Phys. B, 2024, 33(6): 067501.
[12] High-pressure study on calcium azide (Ca(N3)2): Bending of azide ions stabilizes the structure
Xiaoxin Wu(武晓鑫), Yingjian Wang(王颖健), Siqi Li(李思琪), Juncheng Lv(吕俊呈), Jingshu Wang(王婧姝), Lihua Yang(杨丽华), Qi Zhang(张旗), Yanqing Liu(刘艳清), Junkai Zhang(张俊凯), and Hongsheng Jia(贾洪声). Chin. Phys. B, 2024, 33(5): 056201.
[13] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[14] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[15] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
No Suggested Reading articles found!