Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076102    DOI: 10.1088/1674-1056/ad3ef6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure

Xiao-Long Pan(潘小龙)1,2, Hao Wang(王豪)2, Lei Liu(柳雷)2, Xiang-Rong Chen(陈向荣)1,†, and Hua-Yun Geng(耿华运)2,3,‡
1 College of Physics, Sichuan University, Chengdu 610065, China;
2 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China;
3 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
Abstract  Mn$_{3}$TeO$_{6}$ (MTO) has been experimentally found to adopt a $P2_1/n$ structure under high pressure, which exhibits a significantly smaller band gap compared to the atmospheric $R\bar{3}$ phase. In this study, we systematically investigate the magnetism, structural phase transition, and electronic properties of MTO under high pressure through first-principles calculations. Both $R\bar{3}$ and $P2_1/n$ phases of MTO are antiferromagnetic at zero temperature. The $R\bar{3}$ phase transforms to the $P2_1/n$ phase at 7.58 GPa, accompanied by a considerable volume collapse of about 6.47%. Employing the accurate method that combines DFT$+U$ and GW, the calculated band gap of $R\bar{3}$ phase at zero pressure is very close to the experimental values, while that of the $P2_1/n$ phase is significantly overestimated. The main reason for this difference is that the experimental study incorrectly used the Kubelka-Munk plot for the indirect band gap to obtain the band gap of the $P2_1/n$ phase instead of the Kubelka-Munk plot for the direct band gap. Furthermore, our study reveals that the transition from the $R\bar{3}$ phase to the $P2_1/n$ phase is accompanied by a slight reduction in the band gap.
Keywords:  magnetism      phase transition      band gap      high pressure  
Received:  04 January 2024      Revised:  04 April 2024      Accepted manuscript online:  16 April 2024
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  71.20.Nr (Semiconductor compounds)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by National Key Research and Development Program of China (Grant No. 2021YFB3802300), the Natural Science Foundation of China Academy of Engineering Physics (Grant Nos. U1730248 and U1830101), and the National Natural Science Foundation of China (Grant Nos. 12202418, 11872056, 11904282, 12074274, and 12174356).
Corresponding Authors:  Xiang-Rong Chen, Hua-Yun Geng     E-mail:  xrchen@scu.edu.cn;s102genghy@caep.cn

Cite this article: 

Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运) First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure 2024 Chin. Phys. B 33 076102

[1] Nechache R, Harnagea C, Licoccia S, Traversa E, Ruediger A, Pignolet A and Rosei F 2011 Appl. Phys. Lett. 98 202902
[2] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J and Rosei F 2015 Nat. Photon. 9 61
[3] Liu L, Skogby H, Ivanov S, Weil M, Mathieu R and Lazor P 2019 Chem. Commun. 55 12000
[4] Grätzel M 2014 Nat. Mater. 13 838
[5] Zhang T, Chen H, Bai Y, Xiao S, Zhu L, Hu C, Xue Q and Yang S 2016 Nano Energy 26 620
[6] Chen H, Zheng X, Li Q, Yang Y, Xiao S, Hu C, Bai Y, Zhang T, Wong K S and Yang S 2016 J. Mater. Chem. A 4 12897
[7] Meng L, You J and Yang Y 2018 Nat. Commun. 9 5265
[8] Ning C Z, Dou L and Yang P 2017 Nat. Rev. Mater. 2 17070
[9] Zhang G, Wu H, Li G, Huang Q, Yang C, Huang F, Liao F and Lin J 2013 Sci. Rep. 3 1265
[10] Arévalo-López Á M, Solana-Madruga E, Aguilar-Maldonado C, Ritter C, Mentré O and Attfield J P 2019 Chem. Commun. 55 14470
[11] Su H P, Li S F, Han Y F, Wu M X, Gui C R, Chang Y F, Croft M, Ehrlich S, Khalid S, Adem U, Dong S, Sun Y, Huang F and Li M R 2019 J. Mater. Chem. C 7 12306
[12] Liu L, Geng H Y, Pan X, Song H X, Ivanov S, Mathieu R, Weil M, Li Y, Li X and Lazor P 2022 Appl. Phys. Lett. 121 044102
[13] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[14] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[15] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[16] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[19] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[20] Tadano T and Tsuneyuki S 2015 Phys. Rev. B 92 054301
[21] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[22] Vinet P, Ferrante J, Rose J H and Smith J R 1987 J. Geophys. Res. 92 9319
[1] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[2] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[3] Simultaneous control of ferromagnetism and ferroelasticity by oxygen octahedral backbone stretching
Genhao Liang(梁根豪), Hui Cao(曹慧), Long Cheng(成龙), Junkun Zha(查君坤), Mingrui Bao(保明睿), Fei Ye(叶飞), Hua Zhou(周华), Aidi Zhao(赵爱迪), and Xiaofang Zhai(翟晓芳). Chin. Phys. B, 2024, 33(9): 097101.
[4] First-principles study on stability and superconductivity of ternary hydride LaYHx(x=2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[5] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[6] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1−xCo2Sn
Bo-wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[7] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[8] Crystal growth, magnetic and electrical transport properties of the kagome magnet RCr6Ge6 (R=Gd-Tm)
Xingyu Yang(杨星宇), Qingqi Zeng(曾庆祺), Miao He(何苗), Xitong Xu(许锡童), Haifeng Du(杜海峰), and Zhe Qu(屈哲). Chin. Phys. B, 2024, 33(7): 077501.
[9] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[10] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[11] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[12] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[13] Triple points and phase transitions of D-dimensional dyonic AdS black holes with quasitopological electromagnetism in Einstein-Gauss-Bonnet gravity
Ping-Hui Mou(牟平辉), Qing-Quan Jiang(蒋青权), Ke-Jian He(何柯腱), and Guo-Ping Li(李国平). Chin. Phys. B, 2024, 33(6): 060401.
[14] Pressure-induced magnetic phase and structural transition in SmSb2
Tao Li(李涛), Shuyang Wang(王舒阳), Xuliang Chen(陈绪亮), Chunhua Chen(陈春华), Yong Fang(房勇), and Zhaorong Yang(杨昭荣). Chin. Phys. B, 2024, 33(6): 066401.
[15] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
No Suggested Reading articles found!