Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080202    DOI: 10.1088/1674-1056/ad50c0
GENERAL Prev   Next  

Topological phases and edge modes of an uneven ladder

Wen-Chuang Shang(商文创)1,2, Yi-Ning Han(韩熠宁)1,2, Shimpei Endo3, and Chao Gao(高超)1,2,†
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
2 Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China;
3 Department of Engineering Science, The University of Electro-Communications, Tokyo 182-8585, Japan
Abstract  We investigate the topological properties of a two-chain quantum ladder with uneven legs, i.e., the two chains differ in their periods by a factor of 2. Such an uneven ladder presents rich band structures classified by the closure of either direct or indirect bandgaps. It also provides opportunities to explore fundamental concepts concerning band topology and edge modes, including the difference of intracellular and intercellular Zak phases, and the role of the inversion symmetry (IS). We calculate the Zak phases of the two kinds and find excellent agreement with the dipole moment and extra charge accumulation. We also find that configurations with IS feature a pair of degenerate two-side edge modes emerging as the closure of the direct bandgap, while configurations without IS feature one-side edge modes emerging as not only the closure of both direct and indirect bandgaps but also within the band continuum. Furthermore, by projecting to the two sublattices, we find that the effective Bloch Hamiltonian corresponds to that of a generalized Su-Schrieffer-Heeger model or the Rice-Mele model whose hopping amplitudes depend on the quasimomentum. In this way, the topological phases can be efficiently extracted through winding numbers. We propose that uneven ladders can be realized by spin-dependent optical lattices and their rich topological characteristics can be examined by near future experiments.
Keywords:  ladder model      symmetry-protected topological phase      topological invariant      bulk-boundary correspondence  
Received:  28 March 2024      Revised:  27 May 2024      Accepted manuscript online: 
PACS:  02.40.-k (Geometry, differential geometry, and topology)  
  03.65.-w (Quantum mechanics)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  37.10.Jk (Atoms in optical lattices)  
Fund: This work was supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LR22A040001 and LY21A040004) and the National Natural Science Foundation of China (Grant Nos. 12074342 and 11835011).
Corresponding Authors:  Chao Gao     E-mail:  gaochao@zjnu.edu.cn

Cite this article: 

Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超) Topological phases and edge modes of an uneven ladder 2024 Chin. Phys. B 33 080202

[1] Chen X, Gu Z C, Liu Z X and Wen X G 2012 Science 338 1604
[2] Essin A M and Gurarie V 2011 Phys. Rev. B 84 125132
[3] Mong R S and Shivamoggi V 2011 Phys. Rev. B 83 125109
[4] Rhim J W, Behrends J and Bardarson J H 2017 Phys. Rev. B 95 035421
[5] Rhim J W, Bardarson J H and Slager R J 2018 Phys. Rev. B 97 115143
[6] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[7] Asbóth J K, Oroszlány L and Pályi A 2016 A short course on topological insulators (Cham: Springer International Publishing Switzerland) p. 21
[8] Zak J 1989 Phys. Rev. Lett. 62 2747
[9] Rice M J and Mele E J 1982 Phys. Rev. Lett. 49 1455
[10] Lu M X and Deng W J 2019 Acta. Phys. Sin. 68 120301 (in Chinese)
[11] Lin Y T, Kennes D M, Pletyukhov M, Weber C S, Schoeller H and Meden V 2020 Phys. Rev. B 102 085122
[12] De Léséleuc S, Lienhard V, Scholl P, Barredo D, Weber S, Lang N, Büchler H P, Lahaye T and Browaeys A 2019 Science 365 775
[13] Nersesyan A A 2020 Phys. Rev. B 102 045108
[14] Padhan A, Mondal S, Vishveshwara S and Mishra T 2024 Phys. Rev. B 109 085120
[15] Li X and Liu W V 2013 Phys. Rev. A 87 063605
[16] Li X, Zhao E and Vincent Liu W 2013 Nat. Commun. 4 1523
[17] Kang J H, Han J H and Shin Y i 2018 Phys. Rev. Lett. 121 150403
[18] Chen S, Büttner H and Voit J 2003 Phys. Rev. B 67 054412
[19] Liu Z X, Yang Z B, Han Y J, Yi W and Wen X G 2012 Phys. Rev. B 86 195122
[20] Schmidiger D, Mühlbauer S, Zheludev A, Bouillot P, Giamarchi T, Kollath C, Ehlers G and Tsvelik A M 2013 Phys. Rev. B 88 094411
[21] Zou H, Zhao E, Guan X W and Liu W V 2019 Phys. Rev. Lett. 122 180401
[22] An F A, Meier E J and Gadway B 2018 Phys. Rev. X 8 031045
[23] Xu X, Wang J, Dai J, Mao R, Cai H, Zhu S Y and Wang D W 2022 Phys. Rev. Lett. 129 273603
[24] Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J and Rey A M 2016 Phys. Rev. Lett. 116 035301
[25] Li Y, Zhang J, Wang Y, Du H, Wu J, Liu W, Mei F, Ma J, Xiao L and Jia S 2022 Light Sci. Appl. 11 13
[26] Jünemann J, Piga A, Ran S J, Lewenstein M, Rizzi M and Bermudez A 2017 Phys. Rev. X 7 031057
[27] He Y, Mao R, Cai H, Zhang J X, Li Y, Yuan L, Zhu S Y and Wang D W 2021 Phys. Rev. Lett. 126 103601
[28] Hung J S C, Busnaina J H, Chang C W S, Vadiraj A M, Nsanzineza I, Solano E, Alaeian H, Rico E and Wilson C M 2021 Phys. Rev. Lett. 127 100503
[29] Atala M, Aidelsburger M, Lohse M, Barreiro J T, Paredes B and Bloch I 2014 Nat. Phys. 10 588
[30] Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X and Wang D W 2019 Phys. Rev. Lett. 122 023601
[31] Dutt A, Yuan L, Yang K Y, Wang K, Buddhiraju S, Vučkovivć J and Fan S 2022 Nat. Commun. 13 3377
[32] Li Y, Du H, Wang Y, Liang J, Xiao L, Yi W, Ma J and Jia S 2023 Nat. Commun. 14 7560
[33] Lacki M, Pichler H, Sterdyniak A, Lyras A, Lembessis V E, Al-Dossary O, Budich J C and Zoller P 2016 Phys. Rev. A 93 013604
[34] Han J H, Kang J H and Shin Y 2019 Phys. Rev. Lett. 122 065303
[35] Yan Y, Zhang S L, Choudhury S and Zhou Q 2019 Phys. Rev. Lett. 123 260405
[36] Zhang R, Yan Y and Zhou Q 2021 Phys. Rev. Lett. 126 193001
[37] Fabre A, Bouhiron J B, Satoor T, Lopes R and Nascimbene S 2022 Phys. Rev. Lett. 128 173202
[38] Li C H, Yan Y, Feng S W, Choudhury S, Blasing D B, Zhou Q and Chen Y P 2022 PRX Quantum 3 010316
[39] Zhou T W, Cappellini G, Tusi D, Franchi L, Parravicini J, Repellin C, Greschner S, Inguscio M, Giamarchi T, Filippone M, Catani J and Fallani L 2023 Science 381 427
[40] Zhou B Z and Zhou B 2016 Chin. Phys. B 25 107401
[41] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304
[42] Liang H Q and Li L 2022 Chin. Phys. B 31 010310
[43] An F A, Meier E J and Gadway B 2017 Sci. Adv. 3 e1602685
[44] LeBlanc L J and Thywissen J H 2007 Phys. Rev. A 75 053612
[45] Arora B, Safronova M S and Clark C W 2011 Phys. Rev. A 84 043401
[46] Wen K, Meng Z, Wang L, Chen L, Huang L, Wang P and Zhang J 2021 J. Opt. Soc. Am. B 38 3269
[47] Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C and Zhang J 2023 Nature 615 231
[48] Su W P and Schrieffer J R 1981 Phys. Rev. Lett. 46 738
[49] Guo H and Chen S 2015 Phys. Rev. B 91 041402
[50] Alvarez V M and Coutinho-Filho M 2019 Phys. Rev. A 99 013833
[51] Anastasiadis A, Styliaris G, Chaunsali R, Theocharis G and Diakonos F K 2022 Phys. Rev. B 106 085109
[52] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[53] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[54] Jiao Z Q, Longhi S, Wang X W, Gao J, Zhou W H, Wang Y, Fu Y X, Wang L, Ren R J, Qiao L F and Jin X M 2021 Phys. Rev. Lett. 127 147401
[55] Huckle T K, Waldherr K and Schulte-Herbrüggen T 2013 Lin. Multilin. Alg. 61 91
[56] Palumbo G 2023 arXiv:2312.13907
[cond-mat]
[57] Li Y, Du H, Wang Y, Liang J, Xiao L, Yi W, Ma J and Jia S 2023 Nat. Commun. 14 7560
[58] Velasco C G and Paredes B 2019 arXiv:1907.11460
[condmat]
[59] Kudin K N, Car R and Resta R 2007 J. Chem. Phys. 126 234101
[60] Vanderbilt D and King-Smith R 1993 Phys. Rev. B 48 4442
[61] Baldereschi A, Baroni S and Resta R 1988 Phys. Rev. Lett. 61 734
[62] Citro R 2016 Nat. Phys. 12 288
[63] Feshbach H 1958 Ann. Phys. 5 357
[64] Feshbach H 1962 Ann. Phys. 19 287
[65] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[1] Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model
Yan-Wei Dai(代艳伟), Ai-Min Chen(陈爱民), Xi-Jing Liu(刘希婧), and Yao-Heng Su(苏耀恒). Chin. Phys. B, 2023, 32(9): 090304.
[2] Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2
Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇). Chin. Phys. B, 2023, 32(7): 077401.
[3] Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk-boundary correspondence
Xiaosen Yang(杨孝森), Yang Cao(曹阳), and Yunjia Zhai(翟云佳). Chin. Phys. B, 2022, 31(1): 010308.
[4] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[5] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[6] A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2020, 29(1): 010302.
[7] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[8] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[9] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[10] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
No Suggested Reading articles found!