Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107104    DOI: 10.1088/1674-1056/ad74e7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain tunable excitonic optical properties in monolayer Ga2O3

Hao-Lei Cui(崔浩磊), Zhen Quan(权真), and Shu-Dong Wang(王舒东)†
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  Two-dimensional (2D) Ga$_{2}$O$_{3}$ has been confirmed to be a stable structure with five atomic layer thickness configuration. In this work, we study the quasi-particle electronic band structures and then access the excitonic optical properties through solving the Bethe-Salpeter equation (BSE). The results reveal that the exciton dominates the optical absorption in the visible light region with the binding energy as large as $\sim 1.0$ eV, which is highly stable at room temperature. Importantly, both the dominant absorption P$_{1}$ and P$_{2}$ peaks are optically bright without dark exciton between them, and thus is favorable for luminescence process. The calculated radiative lifetime of the lowest-energy exciton is 2.0$\times10^{-11}$ s at 0 K. Furthermore, the radiative lifetime under $+4$% tensile strain is one order of magnitude shorter than that of the strain-free case, while it is less insensitive under the compressive strain. Our findings set the stage for future theoretical and experimental investigation on monolayer Ga$_{2}$O$_{3}$.
Keywords:  excitons      radiative lifetime      Ga$_{2}$O$_{3}$  
Received:  08 July 2024      Revised:  24 August 2024      Accepted manuscript online:  29 August 2024
PACS:  71.35.-y (Excitons and related phenomena)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  73.43.Cd (Theory and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12064032).s
Corresponding Authors:  Shu-Dong Wang     E-mail:  sdwang@imu.edu.cn

Cite this article: 

Hao-Lei Cui(崔浩磊), Zhen Quan(权真), and Shu-Dong Wang(王舒东) Strain tunable excitonic optical properties in monolayer Ga2O3 2024 Chin. Phys. B 33 107104

[1] Orita M, Ohta H, Hirano M and Hosono H 2000 Appl. Phys. Lett. 77 4166
[2] Kohn J, Katz G and Broder J D 1956 Am. Mineral. 42 398
[3] Saurat M and Revcolevschi A 1971 Rev. Int. Hautes. Refract. 8 291
[4] He H, Blanco M A and Pandey R 2006 Appl. Phys. Lett. 88 261904
[5] He H, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rerat M 2006 Phys. Rev. B 74 195123
[6] Peelaers H and Van de Walle C G 2017 Phys. Rev. B 96 081409
[7] Liu Y, Wang P, Yang T, Wu Q, Yang Y T and Zhang Z Y 2022 Chin. Phys. B 31 117305
[8] Xi Z Y, Yang L L, Shu L C, Zhang M L, Li S, Shi L, Liu Z, Guo Y F and Tang W H 2023 Chin. Phys. B 32 088502
[9] Galazka Z 2018 Semicond. Sci. Technol. 33 113001
[10] Von Wenckstern H 2017 Adv. Electron. Mater. 3 1600350
[11] Kim M, Seo J H, Singisetti U and Ma Z 2017 J. Mater. Chem. C 5 8338
[12] Li Y, Tokizono T, Liao M, Zhong M, Koide Y, Yamada I and Delaunay J J 2010 Adv. Funct. Mater. 20 3972
[13] Jin S, Wang X, Wang X, Ju M, Shen S, Liang W, Zhao Y, Feng Z, Playford H Y, Walton R I and Li C 2015 J. Phys. Chem. C 119 18221
[14] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[15] Zhou H, Maize K, Qiu G, Shakouri A and Ye P D 2017 Appl. Phys. Lett. 111 092102
[16] Kwon Y, Lee G, Oh S, Kim J H, Pearton S J and Ren F 2017 Appl. Phys. Lett. 110 131901
[17] Dong L, Zhou S, Gong L, Wang W, Zhang L, Yang C, Yu J and Liu W 2020 J. Mater. Chem. C 8 12551
[18] Barman S K and Huda M N 2019 Phys. Status Solidi RRL 13 1800554
[19] Zavabeti A, Ou J Z, Carey B J, Syed N, Orrell-Trigg R, Mayes E L H, Xu C, Kavehei O, O’Mullane A P, Kaner R B, Kalantar-zadeh K and Daeneke T 2017 Science 358 332
[20] Chandiran A K, Tetreault N, Humphry-Baker R, Kessler F, Baranoff E, Yi C, Nazeeruddin M K and Grätzel M 2012 Nano Lett. 12 3941
[21] Zhang T, Li Y, Zhang Y, Feng Q, Ning J, Zhang C, Zhang J and Hao Y 2021 J. Alloys Compd. 859 157810
[22] Zhao J, Byggmästar J, Zhang Z, Djurabekova F, Nordlund K and Hua M 2021 Phys. Rev. B 104 054107
[23] Liao Y, Zhang Z, Gao Z, Qian Q and Hua M 2020 ACS Appl. Mater. Interfaces 12 30659
[24] Zhao J, Wang X, Chen H, Zhang Z and Hua M 2022 Chem. Mater. 34 3648
[25] Zhao J, Huang X, Yin Y, Liao Y, Mo H, Qian Q, Guo Y, Chen X, Zhang Z and Hua M 2021 J. Phys. Chem. Lett. 12 5813
[26] Deng Z 2022 Phys. Chem. Chem. Phys. 24 13671
[27] Jin C, Tang X, Sun Q, Mu C, Krasheninnikov A V and Kou L 2024 J. Phys. Chem. Lett. 15 2650
[28] Zheng Y, Tang X, Wang W, Jin L and Li G 2021 Adv. Funct. Mater. 31 2008307
[29] Liu H F, Antwi K K A, Yakovlev N L, Tan H R, Ong L T, Chua S J and Chi D Z 2014 ACS Appl. Mater. Interfaces 6 3501
[30] Zhou J, Zeng Q, Lv D, Sun L, Niu L, Fu W, Liu F, Shen Z, Jin C and Liu Z 2015 Nano Lett. 15 6400
[31] Almeida G, Dogan S, Bertoni G, Giannini C, Gaspari R, Perissinotto S, Krahne R, Ghosh S and Manna L 2017 J. Am. Chem. Soc. 139 3005
[32] Xue F, Zhang J, Hu W, Hsu W T, Han A, Leung S F, Huang J K, Wan Y, Liu S, Zhang J, He J H, Chang W H, Wang Z L, Zhang X and Li L J 2018 ACS Nano 12 4976
[33] Cui C, Hu W J, Yan X, Addiego C, Gao W, Wang Y, Wang Z, Li L, Cheng Y, Li P, Zhang X, Alshareef H N, Wu T, Zhu W, Pan X and Li L J 2018 Nano Lett. 18 1253
[34] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956
[35] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[36] Liu G, Zhang Z, Wang H, Li G, Wang J and Gao Z 2021 J. Appl. Phys. 130 105106
[37] Fu C F, Sun J, Luo Q, Li X, Hu W and Yang J 2018 Nano Lett. 18 6312
[38] Zhao P, Ma Y, Lv X, Li M, Huang B and Dai Y 2018 Nano Energy 51 533
[39] Xie Z, Yang F, Xu X, Lin R and Chen L 2018 Front. Chem. 6 430
[40] Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore II R L and Yu B 2014 ACS Nano 8 514
[41] Xiao J, Zhao M, Wang Y and Zhang X 2017 Nanophotonics 6 1309
[42] Mueller T and Malic E 2018 npj 2D Materilas and Applications 2 29
[43] Regan E C, Wang D, Paik E Y, Zeng Y, Zhang L, Zhu J, MacDonald A H, Deng H and Wang F 2022 Nature Reviews Materials 7 778
[44] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, et al. 2009 J. Phys.: Condens. Matter 21 395502
[45] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, et al. 2017 J. Phys.: Condens. Matter 29 465901
[46] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[47] Sohier T, Calandra M and Mauri F 2017 Phys. Rev. B 96 075448
[48] Hamann D R 2013 Phys. Rev. B 88 85117
[49] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39
[50] Godby R W and Needs R J 1989 Phys. Rev. Lett. 62 1169
[51] Bruneval F and Gonze X 2008 Phys. Rev. B 78 085125
[52] Albrecht S, Reining L, Del Sole R and Onida G 1998 Phys. Rev. Lett. 80 4510
[53] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927
[54] Marini A, Hogan C, Grüning M and Varsano D 2009 Comput. Phys. Commun. 180 1392
[55] Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, et al. 2019 J. Phys.: Condens. Matter 31 325902
[56] Palummo M, Bernardi M and Grossman J C 2015 Nano Lett. 15 2794
[57] Chen H Y, Jhalani V A, Palummo M and Bernardi M 2019 Phys. Rev. B 100 075135
[58] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X and Li L J 2017 Nat. Nanotechnol. 12 744
[59] Xia C, Xiong W, Du J, Wang T, Peng Y and Li J 2018 Phys. Rev. B 98 165424
[1] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2021, 30(2): 027802.
[4] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[5] Dynamic recombination of triplet excitons in polymer heterojunctions
Ya-Dong Wang(王亚东), Jian-Jun Liu(刘建军), Xi-Ru Wang(王溪如), Yan-Xia Liu(刘艳霞), and Yan Meng(孟艳). Chin. Phys. B, 2020, 29(11): 117101.
[6] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
[7] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[8] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[9] Optical anisotropy and the direction of polarization of exciton emissions in a semiconductor quantum dot:Effect of heavy- and light-hole mixing
Ranber Singh, Rajiv Kumar, Vikramjeet Singh. Chin. Phys. B, 2017, 26(8): 087303.
[10] Enhancing redshift phenomenon in time-resolved photoluminescence spectra of AlGaN epilayer
Wei Li(李维), Peng Jin(金鹏), Wei-Ying Wang(王维颖), De-Feng Mao(毛德丰), Xu Pan(潘旭), Xiao-Liang Wang(王晓亮), Zhan-Guo Wang(王占国). Chin. Phys. B, 2017, 26(7): 077802.
[11] Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well
Wei-Min Zheng(郑卫民), Su-Mei Li(李素梅), Wei-Yan Cong(丛伟艳), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2016, 25(4): 047302.
[12] Electronic and optical properties of TiO2 and its polymorphs by Z-scan method
S. Divya, V P N Nampoori, P Radhakrishnan, A Mujeeb. Chin. Phys. B, 2014, 23(8): 084203.
[13] Spectroscopic properties and radiative lifetimes of SiTe:A high-level multireference configuration interaction investigation
Li Rui (李瑞), Zhang Xiao-Mei (张晓美), Jin Ming-Xing (金明星), Xu Hai-Feng (徐海峰), Yan Bing (闫冰). Chin. Phys. B, 2014, 23(5): 053101.
[14] Tailoring optical properties of TiO2 in silica glass for limiting applications
S. Divya, Indu Sebastian, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb. Chin. Phys. B, 2014, 23(3): 034210.
[15] Radiative life time of an exciton confined in a strained GaN/Ga1-xAlxN cylindrical dot: built-in electric field effects
Chang Woo Lee, A. John Peter. Chin. Phys. B, 2011, 20(7): 077104.
No Suggested Reading articles found!