Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046801    DOI: 10.1088/1674-1056/ad16d5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2

Haipeng Zhao(赵海鹏)1, Yin Liu(刘隐)1, Shengguo Yang(杨胜国)2,3, Chenfang Lin(林陈昉)1, Mingxing Chen(陈明星)2,3, Kai Braun4, Xinyi Luo(罗心仪)1, Siyu Li(李思宇)1, Anlian Pan(潘安练)1,†, and Xiao Wang(王笑)1,‡
1 Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronics, College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
2 Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Centre for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081, China;
3 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
4 Institute of Physical and Theoretical Chemistry and LISA+, University of Tubingen, Auf der Morgenstelle 18, ¨ 72076 Tubingen, Germany
Abstract  Transition metal ditellurides (TMTDs) have versatile physical properties, including non-trivial topology, Weyl semimetal states and unique spin texture. Controlled growth of high-quality and large-scale monolayer TMTDs with preferred crystal phases is crucial for their applications. Here, we demonstrate the epitaxial growth of 1T'-MoTe2 on Au (111) and graphitized silicon carbide (Gr/SiC) by molecular beam epitaxy (MBE). We investigate the morphology of the grown 1T'-MoTe2 at the atomic level by scanning tunnelling microscopy (STM) and reveal the corresponding microscopic growth mechanism. It is found that the unique ordered Te structures preferentially deposited on Au (111) regulate the growth of monolayer single crystal 1T'-MoTe2, while the Mo clusters were preferentially deposited on the Gr/SiC substrate, which impedes the ordered growth of monolayer MoTe2. We confirm that the size of single crystal 1T'-MoTe2 grown on Au (111) is nearly two orders of magnitude larger than that on Gr/SiC. By scanning tunnelling spectroscopy (STS), we observe that the STS spectrum of the monolayer 1T'-MoTe2 nano-island at the edge is different from that at the interior, which exhibits enhanced conductivity.
Keywords:  transition metal ditellurides      1T'-MoTe2      microscopic growth mechanism      scanning tunneling microscopy/spectroscopy (STM/S)  
Received:  04 November 2023      Revised:  11 December 2023      Accepted manuscript online:  19 December 2023
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.-r (Electron states at surfaces and interfaces)  
  37.20.+j (Atomic and molecular beam sources and techniques)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204302), the National Natural Science Foundation of China (Grant Nos. 52022029, 52221001, 92263107, U23A20570, 62090035, U19A2090, and 12174098), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2022JJ30142 and 2019XK2001), and in part supported by the State Key Laboratory of Powder Metallurgy, Central South University. Calculations were carried out using computing resources at the High Performance Computing Platform of Hunan Normal University.
Corresponding Authors:  Anlian Pan, Xiao Wang     E-mail:  anlian.pan@hnu.edu.cn;xiao_wang@hnu.edu.cn

Cite this article: 

Haipeng Zhao(赵海鹏), Yin Liu(刘隐), Shengguo Yang(杨胜国), Chenfang Lin(林陈昉), Mingxing Chen(陈明星), Kai Braun, Xinyi Luo(罗心仪), Siyu Li(李思宇), Anlian Pan(潘安练), and Xiao Wang(王笑) Microscopic growth mechanism and edge states of monolayer 1T'-MoTe2 2024 Chin. Phys. B 33 046801

[1] Wang W, Kim S, Liu M, Cevallos F, Cava R and Ong N 2020 Science 368 534
[2] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B 2015 Nature 527 495
[3] Wang Z, Gresch D, Soluyanov A A, Xie W, Kushwaha S, Dai X, Troyer M, Cava R J and Bernevig B A 2016 Phys. Rev. Lett. 117 056805
[4] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Suss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Forster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B and Medvedev S A 2016 Nat. Commun. 7 11038
[5] Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K and Shen Z X 2017 Nat. Phys 13 683
[6] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[7] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J and Lee Y H 2015 Nat. Phys. 11 482
[8] Chen P, Pai W W, Chan Y H, Sun W L, Xu C Z, Lin D S, Chou M Y, Fedorov A V and Chiang T C 2018 Nat. Commun. 9 2003
[9] Zhu Y, Li Z, Zhang L, Wang B, Luo Z, Long J, Yang J, Fu L and Lu Y 2018 ACS Appl. Mater. Interfaces 10 43291
[10] Chen W, Liang R, Wang J, Zhang S and Xu J 2018 Sci. Bull. 63 997
[11] Whangbo M H and Canadell E 1992 J. Am. Chem. Soc. 114 9587
[12] Heising J and Kanatzidis M 1999 J. Am. Chem. Soc. 121 638
[13] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z and Liu 2019 Nat. Commun. 10 2044
[14] Vila M, Hsu C H, Garcia J H, Benítez L A, Waintal X, Valenzuela S O, Pereira V M and Roche S 2021 Phys. Rev. Res. 3 043230
[15] Guo Z, Wang L, Han M, Zhao E, Zhu L, Guo W, Tan J, Liu B, Chen X Q and Lin J 2022 ACS Nano 16 11268
[16] Pace S, Martini L, Convertino D, Keum D H, Forti S, Pezzini S, Fabbri F, Miseikis V and Coletti C 2021 ACS Nano 15 4213
[17] Yang L, Zhang W, Li J, Cheng S, Xie Z and Chang H 2017 ACS Nano 11 1964
[18] Zhou L, Zubair A, Wang Z, Zhang X, Ouyang F, Xu K, Fang W, Ueno K, Li J, Palacios T, Kong J and Dresselhaus M S 2016 Adv. Mater. 28 9526
[19] Chen J, Wang G, Tang Y, Tian H, Xu J, Dai X, Xu H, Jia J, Ho W and Xie M 2017 ACS Nano 11 3282
[20] Yu Y, Wang G, Tan Y, Wu N, Zhang X A and Qin S 2018 Nano Lett. 18 675
[21] Li Y, Wu D, Wang D, Zhang Y, Min T and Pan Y 2022 Adv. Mater. Interfaces 10 2202043
[22] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.:Condens. Matter 25 095002
[23] Duerloo K A, Li Y and Reed E J 2014 Nat. Commun. 5 4214
[24] Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W and Loh K P 2019 ACS Nano 13 2316
[25] Yang P, Wang D, Zhao X, Quan W, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X and Zhang Y 2022 Nat. Commun. 13 3238
[26] Zhu H, Wang Q, Zhang C, Addou R, Cho K, Wallace R M and Kim M J 2017 Adv. Mater. 29 1606264
[27] Dawson W and Bullett D 1987 J. Phys. Chem. C 20 6159
[28] Guan J, Huang X, Xu X, Zhang S, Jia X, Zhu X, Wang W and Guo 2018 Surf. Sci. 669 198
[29] Pham T T, Castelino R, Felten A and Sporken R 2020 Appl. Surf. Sci. 523 146428
[30] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J and Suenaga K 2015 Science 349 625
[31] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[32] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[33] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[1] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[2] Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
Yan Li(李彦), Yao Xiao(肖遥), Qi Zheng(郑琦), Xiao Lin(林晓), Li Huang(黄立), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(7): 077101.
[3] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[4] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[5] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[6] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[7] Quasi-one-dimensional characters in topological semimetal TaNiTe5
Ni Ma(马妮), De-Yang Wang(王德阳), Ben-Rui Huang(黄本锐), Kai-Yi Li(李凯仪), Jing-Peng Song(宋靖鹏), Jian-Zhong Liu(刘建忠), Hong-Ping Mei(梅红萍), Mao Ye(叶茂), and Ang Li(李昂). Chin. Phys. B, 2023, 32(5): 056801.
[8] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[9] On-surface synthesis of one-dimensional carbyne-like nanostructures with sp-carbon
Wenze Gao(高文泽), Chi Zhang(张弛), Zheng Zhou(周正), and Wei Xu(许维). Chin. Phys. B, 2022, 31(12): 128101.
[10] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
[11] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[12] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[13] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
No Suggested Reading articles found!