Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047101    DOI: 10.1088/1674-1056/ad1380
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials

Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文)
School of Physics and Technology, University of Jinan, Jinan 250022, China
Abstract  We propose a scheme for realizing the spin direction-dependent quantum anomalous Hall effect (QAHE) driven by spin—orbit couplings (SOC) in two-dimensional (2D) materials. Based on the sp3 tight-binding (TB) model, we find that these systems can exhibit a QAHE with out-of-plane and in-plane magnetization for the weak and strong SOC, respectively, in which the mechanism of quantum transition is mainly driven by the band inversion of px,y/pz orbitals. As a concrete example, based on first-principles calculations, we realize a real material of monolayer 1T-SnN2/PbN2 exhibiting the QAHE with in-plane/out-of-plane magnetization characterized by the nonzero Chern number C and topological edge states. These findings provide useful guidance for the pursuit of a spin direction-dependent QAHE and hence stimulate immediate experimental interest.
Keywords:  topological phase transition      quantum anomalous Hall effect      first-principles calculations  
Received:  18 June 2023      Revised:  07 December 2023      Accepted manuscript online:  08 December 2023
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.43.-f (Quantum Hall effects)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by Taishan Scholar Program of Shandong Province (Grant No. ts20190939), Independent Cultivation Program of Innovation Team of Jinan City (Grant No. 2021GXRC043), and the National Natural Science Foundation of China (Grant No. 52173283).
Corresponding Authors:  Chang-Wen Zhang     E-mail:  ss_zhangchw@ujn.edu.cn

Cite this article: 

Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文) Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials 2024 Chin. Phys. B 33 047101

[1] Wang J, Li H, Chang C, et al. 2012 Nano Research 5 739
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Bansil A, Lin H and Colloquium D T 2016 Rev. Mod. Phys. 88 021004
[4] Liu P, Williams J R and Cha J J 2019 Nat. Rev. Mater. 4 479
[5] Li X Y, Ji W X, Wang P J, et al. 2021 Nanoscale Adv. 3 847
[6] Sun H, Li S S, Ji W X and Zhang C W 2022 Phys. Rev. B 105 195112
[7] Li H, Chen C Z, Jiang H, et al. 2021 Phys. Rev. Lett. 127 236402
[8] Liu C X, Qi X L, Dai X, et al. 2008 Phys. Rev. Lett. 101 146802
[9] Zhang H, Lazo C, Blügel S, et al. 2012 Phys. Rev. Lett. 108 056802
[10] You J Y, Chen C, Zhang Z, et al. 2019 Phys. Rev. B 100 064408
[11] Zhang L, Zhang C W, Zhang S F, et al. 2019 Nanoscale 11 5666
[12] Zhang S J, Zhang C W, Zhang S F, et al. 2017 Phys. Rev. B 96 205433
[13] Wu S C, Shan G and Yan B 2014 Phys. Rev. Lett. 113 256401
[14] Huang S M, Lee S T and Mou C Y 2014 Phys. Rev. B 89 195444
[15] Li S S, Ji W X, Hu S J, et al. 2017 ACS Appl. Mater. Inter 9 41443
[16] Ding J, Qiao Z, Feng W, et al. 2011 Phys. Rev. B 84 195444
[17] Acosta C M, Lima M P, Miwa R H, et al. 2014 Phys. Rev. B 89 155438
[18] Zhang M H, Zhang C W, Wang P J, et al. 2018 Nanoscale 10 20226
[19] Zou R, Zhan F, Zheng B, et al. 2020 Phys. Rev. B 101 161108
[20] Garrity K F and Vanderbilt D 2013 Phys. Rev. Lett. 110 116802
[21] Wang Y P, Li S S, Zhang C W, et al. 2017 Appl. Phys. Lett. 110 213101
[22] Wang Z F, Liu Z and Liu F 2013 Phys. Rev. Lett. 110 196801
[23] Yu R, Zhang W, Zhang H J, et al. 2010 Science 329 61
[24] Chang C Z, Zhang J, Feng X, et al. 2013 Science 340 167
[25] Wu B, Song Y L, Ji W X, et al. 2023 Phys. Rev. B 107 214419
[26] Liu C, Wang Y, Li H, et al. 2020 Nat. Mater. 19 522
[27] Von Klitzing K 1986 Rev. Mod. Phys. 58 519
[28] Liu X, Hsu H C and Liu C X 2013 Phys. Rev. Lett. 111 086802
[29] Ren Y, Zeng J, Deng X, et al. 2016 Phys. Rev. B 94 085411
[30] Zhong P, Ren Y, Han Y, et al. 2017 Phys. Rev. B 96 241103
[31] Henk J, Flieger M, Maznichenko I V, et al. 2012 Phys. Rev. Lett. 109 076801
[32] Liu Z, Zhao G, Liu B, et al. 2018 Phys. Rev. Lett. 121 246401
[33] Zhao Y, Kamiya K, Hashimoto K, et al. 2015 J. Am. Chem. Soc. 137 110
[34] Onodera M, Kawamura F, Cuong N T, et al. 2019 APL Mater. 7 101103
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[39] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[40] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[41] Bucher D, Pierce L C T, Mccammon J A, et al. 2011 J. Chem. Theory Comput. 7 890
[42] Mostofi A A, Yates J R, Pizzi G, et al. 2014 Comput. Phys. Commun. 185 2309
[43] Liu Y and Allen R E 1995 Phys. Rev. B 52 1566
[44] Thouless D J, Kohmoto M, Nightingale M P, et al. 1982 Phys. Rev. Lett. 49 405
[45] Yao Y, Kleinman L, Macdonald A H, et al. 2004 Phys. Rev. Lett. 92 037204
[46] Skirlo S A, Lu L, Igarashi Y C, et al. 2015 Phys. Rev. Lett. 115 253901
[47] Zhang K, Jin B J, Gao Y J, Zhang S, Shin H, Zeng H and Park J H 2019 Small 15 1804903
[48] Yu Y J, Yang F Y, Lu X F, et al. 2015 Nat. Nanotechnol. 10 270
[49] Sugawara K, Nakata Y, Shimizu R, et al. 2016 ACS Nano 10 1341
[50] Li X R, Zhang Z Y and Zhang H B 2020 Nanoscale Adv. 2 495
[51] Liu J Y, Liu Z F, Song T L, et al. 2017 J. Mater. Chem. C 5 727
[52] Ertekin E, Chrzan D C and Daw M S 2009 Phys. Rev. B 79 155421
[53] Liu J, Liu Z, Song T, et al. 2017 J. Mater. Chem. C 5 727
[54] Codello A and D'odorico G O 2013 Phys. Rev. Lett. 110 141601
[55] Halilov S V, Perlov A Y, Oppeneer P M, et al. 1998 Phys. Rev. B 57 9557
[56] Kou X, Guo S T, Fan Y, et al. 2014 Phys. Rev. Lett. 113 137201
[57] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[58] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[59] Mostofi A A, Yates J R, Lee Y S, et al. 2008 Comput. Phys. Commun. 178 685
[60] Zhao H, Zhang C W, Ji W X, et al. 2016 Sci. Rep. 6 1
[61] Zhang R W, Ji W X, Zhang C W, et al. 2016 J. Mater. Chem. C 4 2088
[62] Lee Y, Eu P, Lim C Y, et al. 2021 Current Appl. Phys. 30 4
[63] Cho S W, Lee M, Woo S, et al. 2018 Sci. Rep. 8 5739
[64] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 122 077201
[1] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[2] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[3] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[4] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[5] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[6] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[7] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[8] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[9] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[10] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[11] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[12] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[13] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[14] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[15] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
No Suggested Reading articles found!