Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 046503    DOI: 10.1088/1674-1056/ad18a9
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective

Zongli Sun(孙宗利)1,3,†, Yanshuang Kang(康艳霜)2, and Yanmei Kang(康艳梅)4
1 Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China;
2 College of Science, Hebei Agricultural University, Baoding 071001, China;
3 Hebei Key Laboratory of Physics and Energy Technology, Baoding 071003, China;
4 University of International Relations, Beijing 100091, China
Abstract  Combining the mean field Pozhar—Gubbins (PG) theory and the weighted density approximation, a novel method for local thermal conductivity of inhomogeneous fluids is proposed. The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations. The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results, and that it performs better than the original PG theory as well as the local averaged density model (LADM). In its further application to the nano-fluidic films, the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated. It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters. Specifically, in the supercritical states, the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature. However, when the bulk density is small, the thermal conductivity exhibits a decrease-increase transition as the temperature is increased. This is also the case in which the temperature is low. In fact, the decrease—increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore. Furthermore, smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation, and then are beneficial to the enhancement of the thermal conductivity. These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.
Keywords:  thermal conductivity      nano-fluidic films      density functional theory  
Received:  07 November 2023      Revised:  08 December 2023      Accepted manuscript online:  26 December 2023
PACS:  65.20.-w (Thermal properties of liquids)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  66.25.+g (Thermal conduction in nonmetallic liquids)  
Fund: Project supported by the Fundamental Research Fund for the Central Universities of China, and the Research Project for Independently Cultivate Talents of Hebei Agricultural University (Grant No. ZY2023007).
Corresponding Authors:  Zongli Sun     E-mail:  sunzl@ncepu.edu.cn

Cite this article: 

Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅) Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective 2024 Chin. Phys. B 33 046503

[1] Poling B E, Prausnitz J M and O'Connell J P 2001 The Properties of Gases and Liquids (New York:McGrawHill)
[2] Ganvir R B, Walke P V and Kriplani V M 2017 Renew. Sust. Energ. Rev. 75 451
[3] Yuan K J, Shi J M, Aftab W, Qin M L, Usman A, Zhou F, Lv Y, Gao S and Zou R Q 2020 Adv. Funct. Mater. 30 1904228
[4] Galliero G and Boned C 2009 Phys. Rev. E 80 061202
[5] McLinden M O, Klein S A and Perkins R A 2000 Int. J. Refrig. 23 43
[6] Sun T F and Teja A S 2009 J. Chem. Eng. Data 54 2527
[7] Wang X H, Li Y, Yan Y Y, Wright E, Gao N and Chen G M 2020 Int. J. Refrig. 119 316
[8] Arias F J 2023 Int. J. Heat Mass Transfer 209 124111
[9] Zhu J T 2023 Int. J. Heat Mass Transfer 209 124127
[10] Arshad A, Jabbal M and Yan Y Y 2020 Energ. Convers. Manag. 205 112444
[11] Long R, Luo Z Q, Kuang Z F, Liu Z C and Liu W 2020 Nano Energy 67 104284
[12] Wu S F, Yan T, Kuai Z H and Pan W G 2020 Solar Energy 205 474
[13] Zhao Z X, Sun C Z and Zhou R F 2020 Int. J. Heat Mass Transfer 152 119502
[14] Ueki Y, Yamamoto Y, Ohara T and Shibahara M 2023 Int. J. Heat Mass Transfer 202 123746
[15] Giannakopoulos A E, Sofos F, Karakasidis T E and Liakopoulos A 2012 Int. J. Heat Mass Transfer 55 5087
[16] Hyzorek K and Tretiakov K V 2016 J. Chem. Phys. 144 194507
[17] Jin L, Noraldeen S F M, Zhou L P and Du X Z 2022 Int. J. Heat Mass Transfer 185 122325
[18] Chilukoti H K, Kikugawa G, Shibahara M and Ohara T 2015 Phys. Rev. E 91 052404
[19] Zhao Z X, Zhou R F and Sun C Z 2020 J. Chem. Phys. 153 234701
[20] Pozhar L A and Gubbins K E 1993 J. Chem. Phys. 99 8970
[21] Pozhar L A and Gubbins K E 1997 Phys. Rev. E 56 5367
[22] Bugel M and Galliero G 2008 Chem. Phys. 352 249
[23] Lautenschlaeger M P and Hasse H 2019 Fluid Phase Equilibr. 482 38
[24] Sung W and Dahler J S 1984 J. Chem. Phys. 80 3025
[25] Johnson J K, Müller E A and Gubbins K E 1994 J. Phys. Chem. 98 6413
[26] Hoang H and Galliero G 2013 J. Phys.:Condens. Matter 25 485001
[27] Percus J K 1981 J. Chem. Phys. 75 1316
[28] Evans R 1979 Adv. Phys. 28 143
[29] Henderson D 1992 Fundamentals of Inhomogeneous Fluids (New York:Dekker)
[30] Yu Y X and Wu J Z 2002 J. Chem. Phys. 117 10156
[31] Roth R, Evans R, Lang A and Kahl G 2002 J. Phys.:Condens. Matter 14 12063
[32] Yu Y X 2009 J. Chem. Phys. 131 024704
[33] Peng B and Yu Y X 2008 J. Phys. Chem. B 112 15407
[34] Yu Y X, Gao G H and Wang X L 2006 J. Phys. Chem. B 110 14418
[35] You F Q, Yu Y X and Gao G H 2005 J. Phys. Chem. B 109 3512
[36] Sun Z L, Kang Y S and Kang Y M 2019 Chin. Phys. B 28 036102
[37] Sun Z L, Kang Y S and Li S T 2022 J. Phys. Chem. B 126 8010
[38] Bitsanis I, Vanderlick T K, Tirrell M and Davis H T 1988 J. Chem. Phys. 89 3152
[39] Rah K and Eu C B 2001 J. Chem. Phys. 115 9370
[1] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作),. Chin. Phys. B, 2024, 33(6): 068402.
[2] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[3] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[4] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[5] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[6] Wide frequency phonons manipulation in Si nanowire by introducing nanopillars and nanoparticles
Yatao Li(李亚涛), Yingguang Liu(刘英光), Xin Li(李鑫), Hengxuan Li(李亨宣), Zhixiang Wang(王志香), and Jiuyi Zhang(张久意). Chin. Phys. B, 2024, 33(4): 046502.
[7] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[8] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[9] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[10] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[11] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[12] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[13] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[14] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[15] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
No Suggested Reading articles found!