CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction |
Jian-Mei Li(李健梅)1,2, Dong Hao(郝东)1, Li-Huan Sun(孙丽欢)1, Xiang-Qian Tang(唐向前)1,3, Yang An(安旸)1,3, Xin-Yan Shan(单欣岩)1,3,†, and Xing-Hua Lu(陆兴华)1,3,4,5,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Center for Excellence in Topological Quantum Computation, Beijing 100190, China; 5 Songshan Lake Laboratory for Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigated the photon emission spectra on Ag (111) surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum. Characteristic plasmon modes were illustrated as a function of the bias voltage. The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current. Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages, as well as at the field emission resonance with bias voltage increased up to 9 V. Presence of a silver (Ag) nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances, which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum. The results are of potential value for applications where ultimate enhancement of photon emission is desired.
|
Received: 25 May 2022
Revised: 09 July 2022
Accepted manuscript online: 05 August 2022
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
78.60.Fi
|
(Electroluminescence)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961142021, 11774395, and 11727902), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB30201000), and the Beijing Natural Science Foundation, China (Grant No. 4181003). |
Corresponding Authors:
Xin-Yan Shan, Xing-Hua Lu
E-mail: shanxinyan@aphy.iphy.ac.cn;xhlu@aphy.iphy.ac.cn
|
Cite this article:
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华) Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction 2022 Chin. Phys. B 31 116801
|
[1] Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F and Schull G 2018 Science 361 251 [2] Cao S, Roslawska A, Doppagne B, Romeo M, Feron M, Cherioux F, Bulou H, Scheurer F and Schull G 2021 Nat. Chem. 13 766 [3] Kong F F, Tian X J, Zhang Y, Yu Y J, Jing S H, Zhang Y, Tian G J, Luo Y, Yang J L, Dong Z C and Hou J G 2021 Nat. Commun. 12 1280 [4] Hoffmann G, Kliewer J and Berndt R 2001 Phys. Rev. Lett. 87 176803 [5] Nilius N, Ernst N and Freund H J 2000 Phys. Rev. Lett. 84 3994 [6] Hoffmann G, Berndt R and Johansson P 2003 Phys. Rev. Lett. 90 046803 [7] Qiu X H, Nazin G V and Ho W 2003 Science 299 542 [8] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L and Hou J G 2009 Nat. Photon. 4 50 [9] Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C and Hou J G 2017 Nat. Commun. 8 580 [10] Schmidt P, Berndt R and Vexler M I 2007 Phys. Rev. Lett. 99 246103 [11] Reinhardt M, Schull G, Ebert P and Berndt R 2010 Appl. Phys. Lett. 96 152107 [12] Aizpurua J, Apell S P and Berndt R 2000 Phys. Rev. B 62 2065 [13] Gurunarayanan S P, Verellen N, Zharinov V S, James Shirley F, Moshchalkov V V, Heyns M, Van de Vondel J, Radu I P and Van Dorpe P 2017 Nano Lett. 17 7433 [14] Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M and Hecht B 2015 Nat. Photon. 9 582 [15] Braun K, Wang X, Kern A M, Adler H, Peisert H, Chasse T, Zhang D and Meixner A J 2015 Beilstein J. Nanotechnol. 6 1100 [16] Wang X, Braun K, Zhang D, Peisert H, Adler H, Chasse T and Meixner A J 2015 ACS Nano 9 8176 [17] Rossel F, Pivetta M and Schneider W D 2010 Surf. Sci. Rep. 65 129 [18] Braun K, Laible F, Hauler O, Wang X, Pan A, Fleischer M and Meixner A J 2018 Nanophotonics 7 1503 [19] Berndt R, Gimzewski J K and Johansson P 1991 Phys. Rev. Lett. 67 3796 [20] Martinez-Blanco J and Folsch S 2015 J. Phys.: Condens. Matter 27 255008 [21] Schull G, Neel N, Johansson P and Berndt R 2009 Phys. Rev. Lett. 102 057401 [22] Aizpurua J, Hoffmann G, Apell S P and Berndt R 2002 Phys. Rev. Lett. 89 156803 [23] Sivel V V, Coratger R, Ajustron F and Beauvillain J 1995 Phys. Rev. B 51 14598 [24] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1 [25] Mills D L 2002 Phys. Rev. B 65 125419 [26] Johansson P, Monreal R and Apell P 1990 Phys. Rev. B 42 9210 [27] Wang P, Zhao L L, Zhang J J, Li W J, Liu W H, Chen D, Sheng C Q, Wang J O, Qian H J, Ibrahim K and Li H N 2017 Surf. Sci. 666 23 [28] Zhang K H, McLeod I M, Lahti M, Pussi K and Dhanak V R 2012 J. Phys.: Condens. Matter 24 435502 [29] Schmid M, Kaftan A, Steinrück H P and Gottfried J M 2012 Surf. Sci. 606 945 [30] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [31] Abdulhalim I 2018 Nanophotonics 7 1891 [32] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C and Hou J G 2016 Nature 531 623 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|