Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 116801    DOI: 10.1088/1674-1056/ac8732
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction

Jian-Mei Li(李健梅)1,2, Dong Hao(郝东)1, Li-Huan Sun(孙丽欢)1, Xiang-Qian Tang(唐向前)1,3, Yang An(安旸)1,3, Xin-Yan Shan(单欣岩)1,3,†, and Xing-Hua Lu(陆兴华)1,3,4,5,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Center for Excellence in Topological Quantum Computation, Beijing 100190, China;
5 Songshan Lake Laboratory for Materials Laboratory, Dongguan 523808, China
Abstract  We investigated the photon emission spectra on Ag (111) surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum. Characteristic plasmon modes were illustrated as a function of the bias voltage. The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current. Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages, as well as at the field emission resonance with bias voltage increased up to 9 V. Presence of a silver (Ag) nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances, which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum. The results are of potential value for applications where ultimate enhancement of photon emission is desired.
Keywords:  scanning tunneling microscopy      luminescence      surface plasmon      field emission resonance  
Received:  25 May 2022      Revised:  09 July 2022      Accepted manuscript online:  05 August 2022
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  78.60.Fi (Electroluminescence)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961142021, 11774395, and 11727902), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB30201000), and the Beijing Natural Science Foundation, China (Grant No. 4181003).
Corresponding Authors:  Xin-Yan Shan, Xing-Hua Lu     E-mail:  shanxinyan@aphy.iphy.ac.cn;xhlu@aphy.iphy.ac.cn

Cite this article: 

Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华) Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction 2022 Chin. Phys. B 31 116801

[1] Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F and Schull G 2018 Science 361 251
[2] Cao S, Roslawska A, Doppagne B, Romeo M, Feron M, Cherioux F, Bulou H, Scheurer F and Schull G 2021 Nat. Chem. 13 766
[3] Kong F F, Tian X J, Zhang Y, Yu Y J, Jing S H, Zhang Y, Tian G J, Luo Y, Yang J L, Dong Z C and Hou J G 2021 Nat. Commun. 12 1280
[4] Hoffmann G, Kliewer J and Berndt R 2001 Phys. Rev. Lett. 87 176803
[5] Nilius N, Ernst N and Freund H J 2000 Phys. Rev. Lett. 84 3994
[6] Hoffmann G, Berndt R and Johansson P 2003 Phys. Rev. Lett. 90 046803
[7] Qiu X H, Nazin G V and Ho W 2003 Science 299 542
[8] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L and Hou J G 2009 Nat. Photon. 4 50
[9] Zhang L, Yu Y J, Chen L G, Luo Y, Yang B, Kong F F, Chen G, Zhang Y, Zhang Q, Luo Y, Yang J L, Dong Z C and Hou J G 2017 Nat. Commun. 8 580
[10] Schmidt P, Berndt R and Vexler M I 2007 Phys. Rev. Lett. 99 246103
[11] Reinhardt M, Schull G, Ebert P and Berndt R 2010 Appl. Phys. Lett. 96 152107
[12] Aizpurua J, Apell S P and Berndt R 2000 Phys. Rev. B 62 2065
[13] Gurunarayanan S P, Verellen N, Zharinov V S, James Shirley F, Moshchalkov V V, Heyns M, Van de Vondel J, Radu I P and Van Dorpe P 2017 Nano Lett. 17 7433
[14] Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M and Hecht B 2015 Nat. Photon. 9 582
[15] Braun K, Wang X, Kern A M, Adler H, Peisert H, Chasse T, Zhang D and Meixner A J 2015 Beilstein J. Nanotechnol. 6 1100
[16] Wang X, Braun K, Zhang D, Peisert H, Adler H, Chasse T and Meixner A J 2015 ACS Nano 9 8176
[17] Rossel F, Pivetta M and Schneider W D 2010 Surf. Sci. Rep. 65 129
[18] Braun K, Laible F, Hauler O, Wang X, Pan A, Fleischer M and Meixner A J 2018 Nanophotonics 7 1503
[19] Berndt R, Gimzewski J K and Johansson P 1991 Phys. Rev. Lett. 67 3796
[20] Martinez-Blanco J and Folsch S 2015 J. Phys.: Condens. Matter 27 255008
[21] Schull G, Neel N, Johansson P and Berndt R 2009 Phys. Rev. Lett. 102 057401
[22] Aizpurua J, Hoffmann G, Apell S P and Berndt R 2002 Phys. Rev. Lett. 89 156803
[23] Sivel V V, Coratger R, Ajustron F and Beauvillain J 1995 Phys. Rev. B 51 14598
[24] Pitarke J M, Silkin V M, Chulkov E V and Echenique P M 2007 Rep. Prog. Phys. 70 1
[25] Mills D L 2002 Phys. Rev. B 65 125419
[26] Johansson P, Monreal R and Apell P 1990 Phys. Rev. B 42 9210
[27] Wang P, Zhao L L, Zhang J J, Li W J, Liu W H, Chen D, Sheng C Q, Wang J O, Qian H J, Ibrahim K and Li H N 2017 Surf. Sci. 666 23
[28] Zhang K H, McLeod I M, Lahti M, Pussi K and Dhanak V R 2012 J. Phys.: Condens. Matter 24 435502
[29] Schmid M, Kaftan A, Steinrück H P and Gottfried J M 2012 Surf. Sci. 606 945
[30] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[31] Abdulhalim I 2018 Nanophotonics 7 1891
[32] Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C and Hou J G 2016 Nature 531 623
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[6] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[7] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[8] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[9] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[10] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[11] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[14] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!