Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 018101    DOI: 10.1088/1674-1056/acfb7a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Epitaxial growth of ultrathin gallium films on Cd(0001)

Zuo Li(李佐)1,2, Mingxia Shi(石明霞)1, Gang Yao(姚钢)1, Minlong Tao(陶敏龙)1, and Junzhong Wang(王俊忠)1,†
1 School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
2 School of Science, Guizhou University of Engineering Science, Bijie 551700, China
Abstract  Growth and electronic properties of ultrathin Ga films on Cd(0001) are investigated by low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. It is found that Ga films exhibit the epitaxial growth with the pseudomorphic 1×1 lattice. The Ga islands deposited at 100 K show a ramified shape due to the suppressed edge diffusion and corner crossing. Furthermore, the majority of Ga islands reveal flat tops and a preferred height of three atomic layers, indicating the electronic growth at low temperature. Annealing to room temperature leads to not only the growth mode transition from electronic growth to conventional Stranski—Krastanov growth, but also the shape transition from ramified islands to smooth compact islands. Scanning tunneling spectroscopy (STS) measurements reveal that the Ga monolayer exhibits metallic behavior. DFT calculations indicate that all the interfacial Ga atoms occupy the energetically favorable hcp-hollow sites of the substrate. The charge density difference analysis demonstrates that the charge transfer from the Cd substrate to the Ga atoms is negligible, and there is weak interaction between Ga atoms and the Cd substrate. These results shall shed important light on fabrication of ultrathin Ga films on metal substrates with novel physical properties.
Keywords:  gallium films      electronic growth      STM/STS      density functional theory  
Received:  18 July 2023      Revised:  17 September 2023      Accepted manuscript online:  20 September 2023
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  73.20.At (Surface states, band structure, electron density of states)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  82.20.Wt (Computational modeling; simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874304 and 11574253).
Corresponding Authors:  Junzhong Wang     E-mail:  jzwangcn@swu.edu.cn

Cite this article: 

Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠) Epitaxial growth of ultrathin gallium films on Cd(0001) 2024 Chin. Phys. B 33 018101

[1] Venables J A, Spiller G D T and Hanbucken M 1984 Rep. Prog. Phys. 47 399
[2] Brune H 1998 Surf. Sci. Rep. 31 125
[3] Arthur J R 2002 Surf. Sci. 500 189
[4] Hahn E, Kampshoff E, Wälchli N and Kern K 1995 Phys. Rev. Lett. 74 1803
[5] Pratzer M, Elmers H J and Getzlaff M 2003 Phys. Rev. B 67 153405
[6] Moskalyk R R 2003 Miner. Eng. 16 921
[7] Northrup J E and Neugebauer J 2000 Phys. Rev. B 61 9932
[8] Zhang H M, Sun Y, Li W, Peng J P, Song C L, Xing Y, Zhang Q, Guan J, Li Z, Zhao Y, Ji S, Wang L, He K, Chen X, Gu L, Ling L, Tian M, Li L, Xie X C, Liu J, Yang H, Xue Q K, Wang J and Ma X 2015 Phys. Rev. Lett. 114 107003
[9] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542
[10] Kochat V, Samanta A, Zhang Y, Bhowmick S, Manimunda P, Asif S A S, Stender A S, Vajtai R, Singh A K, Tiwary C S and Ajayan P M 2018 Sci. Adv. 4 1701373
[11] Tao M L, Tu Y B, Sun K, Wang Y L, Xie Z B, Liu L, Shi M X and Wang J Z 2018 2D Mater. 5 035009
[12] Badalov S V, Yagmurcukardes M, Peeters F M and Sahin H 2018 J. Phys. Chem. C 122 28302
[13] Steenbergen K G and Gaston N 2019 Chem. Commun. 55 8872
[14] Li Y, Zhang J, Yin F, Wang Y, Feng H, Zhou S and Du Y 2019 Nanoscale 11 17201
[15] Nakhaee M, Yagmurcukardes M, Ketabi S A and Peeters F M 2019 Phys. Chem. Chem. Phys. 21 15798
[16] Briggs N, Bersch B, Wang Y, Jiang J, Koch R J, Nayir N, Wang K, Kolmer M, Ko W, De La Fuente Duran A, Subramanian S, Dong C, Shallenberger J, Fu M, Zou Q, Chuang Y W, Gai Z, Li A P, Bostwick A, Jozwiak C, Chang C Z, Rotenberg E, Zhu J, van Duin A C T, Crespi V and Robinson J A 2020 Nat. Mater. 19 637
[17] Petrov M, Bekaert J and Milošević M V 2021 2D Mater. 8 035056
[18] Lambie S, Steenbergen K G and Gaston N 2021 Nanoscale Adv. 3 499
[19] Wundrack S, Momeni D, Dempwolf W, Schmidt N, Pierz K, Michaliszyn L, Spende H, Schmidt A, Schumacher H W, Stosch R and Bakin A 2021 Phys. Rev. Mater. 5 024006
[20] Kutana A, Altalhi T, Ruan Q, Zhang J J, Penev E S and Yakobson B I 2022 Nanoscale Adv. 4 1408
[21] Tao M L, Xiao H F, Sun K, Tu Y B, Yuan H K, Xiong Z H, Wang J Z and Xue Q K 2017 Phys. Rev. B 96 125410
[22] Lineberger W C 1976 IEEE Trans. Nucl. Sci. 23 934
[23] Nečas D and Klapetek P 2012 Cent. Eur. J. Phys. 10 181
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Hamann D R 2013 Phys. Rev. B 88 085117
[26] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Co-coccioni M, Dabo I, Dal Corso A, De Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502
[27] Marzari N, Vanderbilt D, De Vita A and Payne M C 1999 Phys. Rev. Lett. 82 3296
[28] Gavioli L, Kimberlin K R, Tringides M C, Wendelken J F and Zhang Z Y 1999 Phys, Rev. Lett. 82 129
[29] Su W B, Chang S H, Jian W B, Chang C S, Chen L J and Tsong T T 2001 Phys. Rev. Lett. 86 5116
[30] Yu H, Jiang C S, Wang X D, Niu Q, Shih C K, Ebert P, White J M, White J M, Shih C K, White J M, Niu Q, Shih C K and Zhang Z Y 2002 Phys. Rev. Lett. 88 016102
[31] Zhang Z Y, Niu Q and Shih C K 1998 Phys. Rev. Lett. 80 5381
[32] Bosio L, Curien H, Dupont M and Rimsky A 1972 Acta Crystallogr. Sect. B 28 1974
[1] Local thermal conductivity of inhomogeneous nano-fluidic films: A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[2] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[3] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[4] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[5] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[6] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[7] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[8] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[9] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[10] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[11] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[12] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[13] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[14] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[15] Activated dissociation of H2 on the Cu(001) surface: The role of quantum tunneling
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(10): 108103.
No Suggested Reading articles found!