|
|
Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures |
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜)†, and Chendong Zhang(张晨栋)‡ |
School of Physics and Technology, Wuhan University, Wuhan 430072, China |
|
|
Abstract Recent findings of two-dimensional (2D) ferroelectric (FE) materials provide more possibilities for the development of 2D FE heterostructure electronic devices based on van der Waals materials and the application of FE devices under the limit of atomic layer thickness. In this paper, we report the in-situ fabrication and probing of electronic structures of In$_{2}$Se$_{3}$-WSe$_{2}$ lateral heterostructures, compared with most vertical FE heterostructures at present. Through molecular beam epitaxy, we fabricated lateral heterostructures with monolayer WSe$_{2}$ (three atomic layers) and monolayer In$_{2}$Se$_{3}$ (five atomic layers). Type-II band alignment was found to exist in either the lateral heterostructure composed of anti-FE $\beta '$-In$_{2}$Se$_{3}$ and WSe$_{2}$ or the lateral heterostructure composed of FE $\beta^*$-In$_{2}$Se$_{3}$ and WSe$_{2}$, and the band offsets could be modulated by ferroelectric polarization. More interestingly, interface states in both lateral heterostructures acted as narrow gap quantum wires, and the band gap of the interface state in the $\beta^*$-In$_{2}$Se$_{3}$-WSe$_{2}$ heterostructure was smaller than that in the $\beta '$-In$_{2}$Se$_{3}$ heterostructure. The fabrication of 2D FE heterostructure and the modulation of interface state provide a new platform for the development of FE devices.
|
Received: 30 December 2022
Revised: 08 February 2023
Accepted manuscript online: 10 February 2023
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305800 and 2018YFA0703700), the National Natural Science Foundation of China (Grant Nos. 11974012 and 12134011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB3000000). |
Corresponding Authors:
Chuansheng Liu, Chendong Zhang
E-mail: csliuan@whu.edu.cn;cdzhang@whu.edu.cn
|
Cite this article:
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋) Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures 2023 Chin. Phys. B 32 056803
|
[1] Marin E G, Marian D, Perucchini M, Fiori G and Iannaccone G 2020 ACS Nano 14 1982 [2] Zhao Y, Guo F, Ding R, Io W F, Pang S Y, Wu W and Hao J 2021 Adv. Opt. Mater. 9 2100864 [3] Sup Choi M, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J and Yoo W J 2013 Nat. Commun. 4 1624 [4] Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R and Yakobson B I 2014 Nat. Mater. 13 1135 [5] Chang K, Villanova J W D, Ji J R, Das S, Kuster F, Barraza-Lopez S, Sessi P and Parkin S S P 2021 Adv. Mater. 33 2102267 [6] Zhang C, Chen Y, Huang J K, Wu X, Li L J, Yao W, Tersoff J and Shih C K 2016 Nat. Commun. 7 10349 [7] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q and Pan A 2014 Nat. Nanotech. 9 1024 [8] Zhang C, Li M Y, Tersoff J, Han Y, Su Y, Li L J, Muller D A and Shih C K 2018 Nat. Nanotech. 13 152 [9] Ling X, Lin Y, Ma Q, Wang Z, Song Y, Yu L, Huang S, Fang W, Zhang X and Hsu A L 2016 Adv. Mater. 28 2322 [10] Zhao M, Ye Y, Han Y, Xia Y, Zhu H, Wang S, Wang Y, Muller D A and Zhang X 2016 Nat. Nanotech. 11 954 [11] Hong W, Shim G W, Yang S Y, Jung D Y and Choi S Y 2018 Adv. Funct. Mater. 29 1807550 [12] Deng W, Chen Y, You C, Liu B, Yang Y, Shen G, Li S, Sun L, Zhang Y and Yan H 2018 Adv. Electron. Mater. 4 1800069 [13] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956 [14] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X and Duan W 2016 Science 353 274 [15] Si M, Liao P Y, Qiu G, Duan Y and Ye P D 2018 ACS Nano 12 6700 [16] Jin H J, Park C, Lee K J, Shin G H and Choi S Y 2021 Adv. Mater. Technol. 6 2100494 [17] Zhang Q, Hou Y, Zhang T, Xu Z, Huang Z, Yuan P, Jia L, Yang H, Huang Y and Ji W 2021 ACS Nano 15 16589 [18] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.: Condens. Matter 25 095002 [19] Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K and Crommie M F 2007 Appl. Phys. Lett. 91 122102 [20] Zhang Z, Nie J, Zhang Z, Yuan Y, Fu Y S and Zhang W 2022 Adv. Mater. 34 2106951 [21] Huo D, Bai Y, Lin X, Deng J, Pan Z, Zhu C, Liu C, Yu H and Zhang C 2022 Nano Lett. 22 7261 [22] Zhang C, Chen Y, Johnson A, Li M Y, Li L J, Mende P C, Feenstra R M and Shih C K 2015 Nano Lett. 15 6494 [23] Le Quang T, Nogajewski K, Potemski M, Dau M T, Jamet M, Mallet P and Veuillen J Y 2018 2D Mater. 5 035034 [24] Dolui K, Pemmaraju C D and Sanvito S 2012 ACS Nano 6 4823 [25] Ishigami M, Sau J D, Aloni S, Cohen M L and Zettl A 2005 Phys. Rev. Lett. 94 056804 [26] Zheng F, Liu Z, Wu J, Duan W and Gu B L 2008 Phys. Rev. B 78 085423 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|