Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056803    DOI: 10.1088/1674-1056/acbaef
RAPID COMMUNICATION Prev   Next  

Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures

Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋)
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  Recent findings of two-dimensional (2D) ferroelectric (FE) materials provide more possibilities for the development of 2D FE heterostructure electronic devices based on van der Waals materials and the application of FE devices under the limit of atomic layer thickness. In this paper, we report the in-situ fabrication and probing of electronic structures of In$_{2}$Se$_{3}$-WSe$_{2}$ lateral heterostructures, compared with most vertical FE heterostructures at present. Through molecular beam epitaxy, we fabricated lateral heterostructures with monolayer WSe$_{2}$ (three atomic layers) and monolayer In$_{2}$Se$_{3}$ (five atomic layers). Type-II band alignment was found to exist in either the lateral heterostructure composed of anti-FE $\beta '$-In$_{2}$Se$_{3}$ and WSe$_{2}$ or the lateral heterostructure composed of FE $\beta^*$-In$_{2}$Se$_{3}$ and WSe$_{2}$, and the band offsets could be modulated by ferroelectric polarization. More interestingly, interface states in both lateral heterostructures acted as narrow gap quantum wires, and the band gap of the interface state in the $\beta^*$-In$_{2}$Se$_{3}$-WSe$_{2}$ heterostructure was smaller than that in the $\beta '$-In$_{2}$Se$_{3}$ heterostructure. The fabrication of 2D FE heterostructure and the modulation of interface state provide a new platform for the development of FE devices.
Keywords:  two-dimensional ferroelectric materials      scanning tunneling microscope      lateral heterostructure      band alignment  
Received:  30 December 2022      Revised:  08 February 2023      Accepted manuscript online:  10 February 2023
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0305800 and 2018YFA0703700), the National Natural Science Foundation of China (Grant Nos. 11974012 and 12134011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB3000000).
Corresponding Authors:  Chuansheng Liu, Chendong Zhang     E-mail:  csliuan@whu.edu.cn;cdzhang@whu.edu.cn

Cite this article: 

Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋) Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures 2023 Chin. Phys. B 32 056803

[1] Marin E G, Marian D, Perucchini M, Fiori G and Iannaccone G 2020 ACS Nano 14 1982
[2] Zhao Y, Guo F, Ding R, Io W F, Pang S Y, Wu W and Hao J 2021 Adv. Opt. Mater. 9 2100864
[3] Sup Choi M, Lee G H, Yu Y J, Lee D Y, Lee S H, Kim P, Hone J and Yoo W J 2013 Nat. Commun. 4 1624
[4] Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R and Yakobson B I 2014 Nat. Mater. 13 1135
[5] Chang K, Villanova J W D, Ji J R, Das S, Kuster F, Barraza-Lopez S, Sessi P and Parkin S S P 2021 Adv. Mater. 33 2102267
[6] Zhang C, Chen Y, Huang J K, Wu X, Li L J, Yao W, Tersoff J and Shih C K 2016 Nat. Commun. 7 10349
[7] Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q and Pan A 2014 Nat. Nanotech. 9 1024
[8] Zhang C, Li M Y, Tersoff J, Han Y, Su Y, Li L J, Muller D A and Shih C K 2018 Nat. Nanotech. 13 152
[9] Ling X, Lin Y, Ma Q, Wang Z, Song Y, Yu L, Huang S, Fang W, Zhang X and Hsu A L 2016 Adv. Mater. 28 2322
[10] Zhao M, Ye Y, Han Y, Xia Y, Zhu H, Wang S, Wang Y, Muller D A and Zhang X 2016 Nat. Nanotech. 11 954
[11] Hong W, Shim G W, Yang S Y, Jung D Y and Choi S Y 2018 Adv. Funct. Mater. 29 1807550
[12] Deng W, Chen Y, You C, Liu B, Yang Y, Shen G, Li S, Sun L, Zhang Y and Yan H 2018 Adv. Electron. Mater. 4 1800069
[13] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z and Zhu W 2017 Nat. Commun. 8 14956
[14] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X and Duan W 2016 Science 353 274
[15] Si M, Liao P Y, Qiu G, Duan Y and Ye P D 2018 ACS Nano 12 6700
[16] Jin H J, Park C, Lee K J, Shin G H and Choi S Y 2021 Adv. Mater. Technol. 6 2100494
[17] Zhang Q, Hou Y, Zhang T, Xu Z, Huang Z, Yuan P, Jia L, Yang H, Huang Y and Ji W 2021 ACS Nano 15 16589
[18] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.: Condens. Matter 25 095002
[19] Brar V W, Zhang Y, Yayon Y, Ohta T, McChesney J L, Bostwick A, Rotenberg E, Horn K and Crommie M F 2007 Appl. Phys. Lett. 91 122102
[20] Zhang Z, Nie J, Zhang Z, Yuan Y, Fu Y S and Zhang W 2022 Adv. Mater. 34 2106951
[21] Huo D, Bai Y, Lin X, Deng J, Pan Z, Zhu C, Liu C, Yu H and Zhang C 2022 Nano Lett. 22 7261
[22] Zhang C, Chen Y, Johnson A, Li M Y, Li L J, Mende P C, Feenstra R M and Shih C K 2015 Nano Lett. 15 6494
[23] Le Quang T, Nogajewski K, Potemski M, Dau M T, Jamet M, Mallet P and Veuillen J Y 2018 2D Mater. 5 035034
[24] Dolui K, Pemmaraju C D and Sanvito S 2012 ACS Nano 6 4823
[25] Ishigami M, Sau J D, Aloni S, Cohen M L and Zettl A 2005 Phys. Rev. Lett. 94 056804
[26] Zheng F, Liu Z, Wu J, Duan W and Gu B L 2008 Phys. Rev. B 78 085423
[1] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[2] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[3] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[4] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[5] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[6] Strain drived band aligment transition of the ferromagnetic VS2/C3N van der Waals heterostructure
Jimin Shang(商继敏), Shuai Qiao(乔帅), Jingzhi Fang(房景治), Hongyu Wen(文宏玉), and Zhongming Wei(魏钟鸣). Chin. Phys. B, 2021, 30(9): 097507.
[7] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[8] Band alignment between NiOx and nonpolar/semipolar GaN planes for selective-area-doped termination structure
Ji-Yao Du(都继瑶), Ji-Yu Zhou(周继禹), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Xin-Zhi Liu(刘新智), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2021, 30(6): 067701.
[9] Molecular beam epitaxy growth of iodide thin films
Xinqiang Cai(蔡新强), Zhilin Xu(徐智临), Shuai-Hua Ji(季帅华), Na Li(李娜), and Xi Chen(陈曦). Chin. Phys. B, 2021, 30(2): 028102.
[10] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[11] Direct observation of the scaling relation between density of states and pairing gap in a dirty superconductor
Chang-Jiang Zhu(朱长江), Limin Liu(刘立民), Peng-Bo Song(宋鹏博), Han-Bin Deng(邓翰宾), Chang-Jiang Yi(伊长江), Ying-Kai Sun(孙英开), R Wu(武睿), Jia-Xin Yin(殷嘉鑫), Youguo Shi(石友国), Ziqiang Wang(汪自强), and Shuheng H. Pan(潘庶亨). Chin. Phys. B, 2021, 30(10): 106802.
[12] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[13] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[14] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
[15] Band alignment of p-type oxide/ε-Ga2O3 heterojunctions investigated by x-ray photoelectron spectroscopy
Chang Rao(饶畅), Zeyuan Fei(费泽元), Weiqu Chen(陈伟驱), Zimin Chen(陈梓敏), Xing Lu(卢星), Gang Wang(王钢), Xinzhong Wang(王新中), Jun Liang(梁军), Yanli Pei(裴艳丽). Chin. Phys. B, 2020, 29(9): 097303.
No Suggested Reading articles found!