|
|
BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization |
Wushuang Han(韩无双)1,2, Kewei Liu(刘可为)1,2,†, Jialin Yang(杨佳霖)1,2, Yongxue Zhu(朱勇学)1,2, Zhen Cheng(程祯)1,2, Xing Chen(陈星)1,2, Binghui Li(李炳辉)1,2, Lei Liu(刘雷)1,2, and Dezhen Shen(申德振)1,2 |
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Ferroelectric materials are promising candidates for ultraviolet photodetectors due to their ferroelectric effect. In this work, a BaTiO3/p-GaN/Au hybrid heterojunction—Schottky self-driven ultraviolet photodetector was fabricated with excellent bipolar photoresponse property. At 0 V bias, the direction of the photocurrent can be switched by flipping the depolarization field of BaTiO3, which allows the performance of photodetectors to be controlled by the ferroelectric effect. Meanwhile, a relatively large responsivity and a fast response speed can be also observed. In particular, when the depolarization field of BaTiO3 is in the same direction of the built-in electric field of the Au/p-GaN Schottky junction (up polarized state), the photodetector exhibits a high responsivity of 18 mA/W at 360 nm, and a fast response speed of < 40 ms at 0 V. These findings pave a new way for the preparation of high-performance photodetectors with bipolar photocurrents.
|
Received: 03 January 2024
Revised: 29 January 2024
Accepted manuscript online: 05 February 2024
|
PACS:
|
77.55.fe
|
(BaTiO3-based films)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
85.60.-q
|
(Optoelectronic devices)
|
|
61.80.Ba
|
(Ultraviolet, visible, and infrared radiation effects (including laser radiation))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074148, 61875194, 11727902, 12204474, 12304111, and 12304112), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020225), Jilin Province Science Fund (Grant Nos. 20220101053JC and 20210101145JC), and Jilin Province Young and Middle-Aged Science and Technology Innovation Leaders and Team Project (Grant No. 20220508153RC). |
Corresponding Authors:
Kewei Liu
E-mail: liukw@ciomp.ac.cn
|
Cite this article:
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振) BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization 2024 Chin. Phys. B 33 047701
|
[1] Hou H Y, Tian S, Chen J D, Ling H H, Ren H, Zhang Y F, Ge H R, Chen W S, Li Y Q, Mao H Y, Ishii H and Tang J X 2023 Advanced Optical Materials [2] Kumar M, Park J Y and Seo H 2021 ACS Applied Materials & Interfaces 13 12241 [3] Gao L, Chen C, Zeng K, Ge C, Yang D, Song H S and Tang J 2016 Light-Science & Applications 5 e16126 [4] Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D and Shen L 2020 Light-Science & Applications 9 31 [5] Yang J, Liu K, Chen X and Shen D 2022 Progress in Quantum Electronics 83 100397 [6] Li K, Xu L, Lu Q D and Hu P 2023 Chin. Phys. B 32 118503 [7] Yang L L, Peng Y S, Liu Z, Zhang M L, Guo Y F, Yang Y and Tang W H 2023 Chin. Phys. B 32 047301 [8] Qi J, Ma N, Ma X C, Adelung R and Yang Y 2018 ACS Applied Materials & Interfaces 10 13712 [9] Li Z, Zhao Y, Li W L, Peng Y Z, Zhao W Y, Wang Z, Shi L and Fei W D 2022 Journal of Materials Chemistry A 10 8772 [10] Ma N and Yang Y 2017 Nano Energy 40 352 [11] Song K, Ma N and Yang Y 2017 Advanced Materials Technologies 2 1700221 [12] Chen J, Priya A S, You D, Pei W J, Zhang Q F, Lu Y M, Li M K, Guo J M and He Y B 2020 Sensors and Actuators A-Physical 315 112267 [13] Gan B K, Yao K, Lai S C, Goh P C and Chen Y F 2011 IEEE Electron Device Lett. 32 665 [14] Zhao R, Ma N, Song K and Yang Y 2020 Adv. Funct. Mater. 30 1906232 [15] Qi J, Ma N and Yang Y 2018 Advanced Materials Interfaces 5 142901 [16] Song K, Ma N, Mishra Y K, Adelung R and Yang Y 2019 Advanced Electronic Materials 5 1800413 [17] Ma N, Zhang K W and Yang Y 2017 Adv. Mater. 29 10 [18] Chen J, You D, Zhang Y, Zhang T, Yao C, Zhang Q F, Li M K, Lu Y M and He Y B 2020 ACS Applied Materials & Interfaces 12 53957 [19] Ashtar M, Marwat M A, Li Z T, Yang Y and Cao D W 2023 Journal of Luminescence 260 119855 [20] Wu G J, Zhang X M, Feng G D, Wang J L, Zhou K J, Zeng J H, Dong D N, Zhu F D, Yang C K, Zhao X M, Gong D N, Zhang M R, Tian B B, Duan C A, Liu Q, Chu J H and Liu M 2023 Nat. Mater. [21] Wu G J, Tian B B, Liu L, Lv W, Wu S, Wang X D, Chen Y, Li J Y, Wang Z, Wu S Q, Shen H, Lin T, Zhou P, Liu Q, Duan C G, Zhang S T, Meng X J, Wu S W, Hu W D, Wang X R, Chu J H and Wang J L 2020 Nat. Electron. 3 43 [22] Wu G J, Wang X D, Chen Y, Wu S Q, Wu B M, Jiang Y Y, Shen H, Lin T, Liu Q, Wang X R, Zhou P, Zhang S T, Hu W D, Meng X J, Chu J H and Wang J L 2020 Adv. Mater. 32 1907937 [23] Chen S S, Zhang X H, Wang G C, Chen S, Ma H Q, Sun T Y, Man B Y and Yang C 2023 Chin. Phys. B 32 127301 [24] Ou Y J, Sun J, Li Y M and Jiang A Q 2023 Chin. Phys. Lett. 40 038501 [25] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B and Yang G Z 2017 Appl. Phys. Lett. 110 142901 [26] Li C X, Chen C, Zhao L and Ma N 2023 ACS Applied Materials & Interfaces 15 23402 [27] Xing J, Guo E J, Dong J J, Hao H Y, Zheng Z Y and Zhao C C 2015 Appl. Phys. Lett. 106 033504 [28] Kim W, Kim H, Yoo T J, Lee J Y, Jo J Y, Lee B H, Sasikala A A, Jung G Y and Pak Y 2022 Nat. Commun. 13 720 [29] Li M, Sun H, Ruan Y, Cao C, Zhou P, Qi Y and Zhang T 2023 Applied Surface Science 618 156665 [30] Yu P, Wang W, Zheng T, Wan X and Jiang Y 2023 ACS Applied Materials & Interfaces 15 46031 [31] Wang S, Nan F, Zhou Y, Zheng F G, Weng Y Y, You L and Fang L 2020 J. Appl. Phys. 128 154101 [32] Zhang Y, Chen J, Zhang Q, Lu Y, Huang H and He Y 2022 J. Am. Ceram. Soc. 105 392 [33] Chen J, Wang Z H, He H F, Mao J X, Zhang Y, Zhang Q F, Li M K, Lu Y M and He Y B 2021 Advanced Electronic Materials 7 2100717 [34] Gao S Y, Xu J P, Shi S B, Chen J, Xu J H, Kong L N, Zhang X S and Li L 2023 J. Mater. Chem. C 11 9201 [35] Hu T G, Zhao L X, Wang Y J, Lin H L, Xie S H, Hu Y, Liu C, Zhu W K, Wei Z M, Liu J and Wang K Y 2023 ACS Nano 17 8411 [36] Liu C, Li X D, Hu T G, Zhu W K, Yan F G, Wu T S, Wang K Y and Zhao L X 2021 Nanoscale 13 17512 [37] Li J, Xi X, Lin S, Ma Z H, Li X D and Zhao L X 2020 ACS Applied Materials & Interfaces 12 11965 [38] Han W S, Liu K W, Yang J L, Chen X, Ai Q, Zhu Y X, Cheng Z, Li B H, Liu L and Shen D Z 2023 Applied Surface Science 615 156371 [39] Wu C I and Kahn A 2000 Applied Surface Science 162 250 [40] Zhou X, Xu J P, Shi S B, Chen J, Xu J H, Kong L N, Zhang X S and Li L 2023 Applied Surface Science 623 157032 [41] Park I H, Kwon K C, Zhu Z Y, Wu X, Li R L, Xu Q H and Loh K P 2020 J. Am. Chem. Soc. 142 18592 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|