CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect |
Ya-Hui Feng(冯亚辉)1, Hong-Xia Guo(郭红霞)2,4,†, Yi-Wei Liu(刘益维)2, Xiao-Ping Ouyang(欧阳晓平)1,4, Jin-Xin Zhang(张晋新)3, Wu-Ying Ma(马武英)4, Feng-Qi Zhang(张凤祁)4, Ru-Xue Bai(白如雪)2, Xiao-Hua Ma(马晓华)1, and Yue Hao(郝跃)1 |
1 State Key Laboratory of Wide Bandgap Semiconductor Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China; 3 School of Space Science and Technology, Xidian University, Xi'an 710071, China; 4 State Key Laboratory of Experimental Simulation and Effects of Strong Pulse Radiation, Northwest Institute of Nuclear Technology, Xi'an 710024, China |
|
|
Abstract The single event effect (SEE) sensitivity of silicon—germanium heterojunction bipolar transistor (SiGe HBT) irradiated by 100-MeV proton is investigated. The simulation results indicate that the most sensitive position of the SiGe HBT device is the emitter center, where the protons pass through the larger collector-substrate (CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-MeV proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly. Notably, at the same proton flux, there is only one single event transient (SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-MeV protons. To further evaluate the tolerance of the device, the influence of proton on SiGe HBT after gamma-ray (60Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
|
Received: 14 July 2023
Revised: 15 August 2023
Accepted manuscript online: 23 August 2023
|
PACS:
|
61.72.uf
|
(Ge and Si)
|
|
61.80.Ed
|
(γ-ray effects)
|
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574171, 61704127, 11875229, 51872251, and 12027813). |
Corresponding Authors:
Hong-Xia Guo
E-mail: guohxnint@126.com
|
Cite this article:
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃) Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect 2024 Chin. Phys. B 33 016104
|
[1] Bellini M, Jun B, Sutton A K, Appaswamy A C, Cheng P, Cressler J D, Marshall P W, Schrimpf R D, Fleetwood D M, El Kareh B, Balster S, Steinmann P and Yasuda H 2007 IEEE Trans. Nucl Sci. 54 2245 [2] Chen T, Sutton A K, Bellini M, Haugerud B M, Comeau J P, Liang Q, Cressler J D, Cai J, Ning T H, Marshall P W and Marshall C J 2005 IEEE Trans. Nucl. Sci. 52 2353 [3] Cressler J D, Krithivasan R, Zhang G, Niu G F, Marshall P W, Kim H S, Reed R A, Palmer M J and Joseph A J 2002 IEEE Trans. Nucl. Sci. 49 3203 [4] Cresler J D 2013 IEEE Trans. Nucl. Sci. 60 1992 [5] Pellish J A and Cohn L M 2013 Extreme environment electronics, Eds. Cressler J D and Mantooth H A (Boca Raton, FL:CRC Press) Ch. 6 [6] Davidović D, Ying H, Dark J. Wier B R, Ge L, Lourenco N E, Omprakash A P, Mourigal M and Cressler J D 2017 Phys. Rev. Appl. 8 024015 [7] Marshall P W, Carts M A and Campbell A 2000 IEEE Trans. Nucl. Sci. 47 2669 [8] Ramachandran V, Gadlage M J, Ahlbin J R, Narasimham B, Alles M L, Reed R A, Bhuva B L, Massengill L W, Black J D and Foster C N 2010 Solid-State Electronics. 54 1052 [9] Huang Y T, C X H, Yang J Q, Ying T, Yu X Q, Dong L, Li W Q and Li X J 2022 Chin. Phys. B 31 028502 [10] Li P 2019 Enhanced low dose rate sensitivity of silicon-germanium heterojunction bipolar transistor, Ph. D. dissertation (Xi'an:Xi'an Jiaotong University Press) [11] Kim H Y, Lo C F, Liu L, Ren F, Kim J and Pearton S J 2022 Appl. Phys. Lett. 100 012107 [12] Laird J S, Hirao T, Onoda S, Mori H and Itoh H 2002 IEEE Trans. Nucl. Sci. 49 1389 [13] Nergui D, Ildefonso A, Tzintzarov G N, Lourenco N E, Omprakash A P, Goley P S, Fleetwood Z E, LaLumondiere S D, Bonsall J P, Monahan D M, Kettering H, Brewe D L and Cressler J D 2020 IEEE Trans. Nucl. Sci. 67 91 [14] Luo J H, Wang Y, Bao M T, Li X J, Yang J Q and Cao F 2022 IEEE Trans. Dev. Mater. Reliab. 22 431 [15] Zhou J C, Wang Y, Li X J, Yang J Q, Bao M T and Cao F 2022 IEEE Trans. Electron Dev. 69 3283 [16] Wei J N, Guo C H, Li P, Li Y H and Guo H X 2019 Chin. Phys. B 28 076106 [17] Varadharajaperumal M, Niu G F, Krithivasan R, Cressler J D, Reed R A, Marshall P W, Vizkelethy G, Dodd P E and Joseph A J 2003 IEEE Trans. Nucl. Sci. 50 2191 [18] Feng Y H, Guo H X, Pan X Y, Zhang J X, Zhong X L, Zhang H, J A A, Liu Y and Ouyang X Y 2022 Chin. Phys. B 32 066105 [19] Sun Y B, Fu J, Wang Y D, Zhou W, Liu Z, Liu X and Shi Y 2016 Microelectron. Reliab. 65 41 [20] Li P, Guo H X, Guo Q, Zhang J X and Wei Y 2015 Chin. Phys. Lett. 32 088505 [21] Niu G F 2010 J. Electrochem. Soc. 33 287 [22] Prakash A P G 2006 IEEE Trans. Nucl. Sci. 53 3175 [23] Cao J, Xu L, Wen S J, Fung R, Narasimham B, Massengill L W and Bhuva B L 2020 IEEE international reliability physics symposium (IRPS) p. 15 [24] Sutton A K, Moen K, Cresser J D, Carts M A, Marshall P W, Pellish J A, Ramachandran V, Reed R A, Alles M L and Niu G F 2008 Solid-State Electron. 52 1652 [25] Guo G, Hirao T, Laird J S, Onoda S, Wakasa T, Yamakawa T and Kamiya T 2004 IEEE Trans. Nucl. Sci. 51 2834 [26] Ying H, Wier B R, Dark J, Lourenco N E, Ge L, Omprakash A P, Mourigal M, Davidovic D and Cresler J D 2017 IEEE Electron Dev. Lett. 38 12 [27] Xu Z Y, Niu G F, Luo L, Cressler J D, Alles M L, Reed R, Mantooth H A, Holmes J and Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3206 [28] Gnana Prakash A P, Hegde V N, Pradeep T M, Pushpa N, Bajpai P K, Patel S P, Trivedi T and Cressler J D 2018 Radiat. Eff. Defects Solids. 172 922 [29] Laird J S, Chen Y, Vo T, Edmonds L, Scheick L and Adell P 2009 IEEE Trans. Nucl. Sci. 56 220 [30] Cressler J D, Comfort J H, Crabbe E F, Patton G L, Stork J M C, Sun J Y C and Meyerson B S 1993 IEEE Trans. Electron Dev. 40 525 [31] Zhang J X, Guo H X, Pan X Y, Guo Q, Zhang F Q, Feng J, Wang X, Wei Y and Wu X X 2018 Chin. Phys. B 27 108501 [32] Chen S Y, Y X, Wu L, Yao S, Li X L, Wang X, Liu M H, Xi S X, Wang L B, Sun J, He C F and Guo Q 2020 Chin. Phys. Lett. 37 046101 [33] Teng J W, Ildefonso A, Tzintzarov G N, Ying H, Moradinia A, Wang P F, Liu X, Zhang E X and Fleetwood D M 2021 IEEE Trans. Nucl. Sci. 68 949 [34] Sun Y B, Liu Z Y, Li X J and Shi Y L 2018 Radiat. Phys. Chem. 151 84 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|