CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure |
Jian-Hui Chen(陈建辉)1, Meng-Fan Liang(梁梦凡)1, Yan Song(宋衍)1, Jun-Jie Yuan(袁俊杰)1, Meng-Yang Zhang(张梦旸)2, Yong-Ming Luo(骆泳铭)1,†, and Ning-Ning Wang(王宁宁)1 |
1 School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Covestro(Shanghai) lnvestment Co., Ltd, Shanghai 200126, China |
|
|
Abstract Field-free spin—orbit torque (SOT) switching of perpendicular magnetization is essential for future spintronic devices. This study demonstrates the field-free switching of perpendicular magnetization in an HfO2/Pt/Co/TaOx structure, which is facilitated by a wedge-shaped HfO2 buffer layer. The field-free switching ratio varies with HfO2 thickness, reaching optimal performance at 25 nm. This phenomenon is attributed to the lateral anisotropy gradient of the Co layer, which is induced by the wedge-shaped HfO2 buffer layer. The thickness gradient of HfO2 along the wedge creates a corresponding lateral anisotropy gradient in the Co layer, correlating with the switching ratio. These findings indicate that field-free SOT switching can be achieved through designing buffer layer, offering a novel approach to innovating spin—orbit device.
|
Received: 25 September 2023
Revised: 26 December 2023
Accepted manuscript online: 04 January 2024
|
PACS:
|
75.70.Tj
|
(Spin-orbit effects)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274108), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY23A040008 and LY23A040008), and the Basic Scientific Research Project of Wenzhou, China (Grant No. G20220025). |
Corresponding Authors:
Yong-Ming Luo
E-mail: ymluo@hdu.edu.cn
|
Cite this article:
Jian-Hui Chen(陈建辉), Meng-Fan Liang(梁梦凡), Yan Song(宋衍), Jun-Jie Yuan(袁俊杰), Meng-Yang Zhang(张梦旸), Yong-Ming Luo(骆泳铭), and Ning-Ning Wang(王宁宁) Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure 2024 Chin. Phys. B 33 047503
|
[1] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, AAkerman J, Roy K, Wang J P, Yang S H, Garello K and Zhang W 2021 IEEE T. Magn. 57 1 [2] Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 35004 [3] Ramaswamy R, Lee J M, Cai K M and Yang H 2018 Appl. Phys. Rev. 5 31107 [4] Aradhya S V, Rowlands G E, Oh J, Ralph D C and Buhrman R A 2016 Nano Lett. 16 5987 [5] Garello K, Avci C O, Miron I M, Baumgartner M, Ghosh A, Auffret S, Boulle O, Gaudin G and Gambardella P 2014 Appl. Phys. Lett. 105 212402 [6] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621 [7] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189 [8] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555 [9] Baek S H C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Nat. Mater. 17 509 [10] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 [11] Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M and Han X F 2019 Nat. Commun. 10 233 [12] Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Nat. Nanotechnol. 11 758 [13] Zhao Z Y, Smith A K, Jamali M and Wang J P 2020 Adv. Electron. Mater. 6 1901368 [14] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447 [15] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Nat. Phys. 13 300 [16] Safeer C K, Jué E, Lopez A, Buda-Prejbeanu L, Auffret S, Pizzini S, Boulle O, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 143 [17] Wu H, Nance J, Razavi S A, Lujan D, Dai B Q, Liu Y X, He H R, Cui B S, Wu D, Wong K, Sobotkiewich K, Li X Q, Carman G P and Wang K L 2021 Nano Lett. 21 515 [18] Chen R Y, Cui Q R, Liao L Y, Zhu Y M, Zhang R Q, Bai H, Zhou Y J, Xing G Z, Pan F, Yang H X and Song C 2021 Nat. Commun. 12 3113 [19] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548 [20] Razavi A, Wu H, Shao Q M, Fang C, Dai B Q, Wong K, Han X F, Yu G Q and Wang K L 2020 Nano Lett. 20 3703 [21] Jin T L, Lim G J, Poh H Y, Wu S, Tan F N and Lew W S 2022 ACS Appl. Mater. Interfaces 14 9781 [22] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653 [23] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L and Yu G H 2019 Appl. Phys. Lett. 115 172403 [24] Wu H, Nance J, Razavi S A, Lujan D, Dai B Q, Liu Y X, He H R, Cui B S, Wu D, Wong K, Sobotkiewich K, Li X Q, Carman G P and Wang K L 2021 Nano Lett. 21 515 [25] Park M H, Kim H J, Kim Y J, Lee W, Moon T and Hwang C S 2013 Appl. Phys. Lett. 102 242905 [26] Hoffmann M, Schroeder U, Schenk T, Shimizu T, Funakubo H, Sakata O, Pohl D, Drescher M, Adelmann C, Materlik R, Kersch A and Mikolajick T 2015 J. Appl. Phys. 118 72006 [27] Quan Z Y, Wang M M, Zhang X, Liu H H, Zhang W and Xu X H 2020 AIP Adv. 10 85024 [28] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodríguez A, Scholl A, Wang S X and Ramesh R 2008 Nat. Mater. 7 478 [29] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548 [30] Wu H, Zhang J, Cui B, Razavi S A, Che X, Pan Q, Wu D, Yu G, Han X and Wang K L 2022 Materials Futures 1 22201 [31] Zhu L J, Ralph D C and Buhrman R A 2021 Phys. Rev. Appl. 15 24059 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|