Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047503    DOI: 10.1088/1674-1056/ad1a88
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure

Jian-Hui Chen(陈建辉)1, Meng-Fan Liang(梁梦凡)1, Yan Song(宋衍)1, Jun-Jie Yuan(袁俊杰)1, Meng-Yang Zhang(张梦旸)2, Yong-Ming Luo(骆泳铭)1,†, and Ning-Ning Wang(王宁宁)1
1 School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Covestro(Shanghai) lnvestment Co., Ltd, Shanghai 200126, China
Abstract  Field-free spin—orbit torque (SOT) switching of perpendicular magnetization is essential for future spintronic devices. This study demonstrates the field-free switching of perpendicular magnetization in an HfO2/Pt/Co/TaOx structure, which is facilitated by a wedge-shaped HfO2 buffer layer. The field-free switching ratio varies with HfO2 thickness, reaching optimal performance at 25 nm. This phenomenon is attributed to the lateral anisotropy gradient of the Co layer, which is induced by the wedge-shaped HfO2 buffer layer. The thickness gradient of HfO2 along the wedge creates a corresponding lateral anisotropy gradient in the Co layer, correlating with the switching ratio. These findings indicate that field-free SOT switching can be achieved through designing buffer layer, offering a novel approach to innovating spin—orbit device.
Keywords:  spin—orbit torque      field-free switching      HfO2 buffer layer  
Received:  25 September 2023      Revised:  26 December 2023      Accepted manuscript online:  04 January 2024
PACS:  75.70.Tj (Spin-orbit effects)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274108), the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY23A040008 and LY23A040008), and the Basic Scientific Research Project of Wenzhou, China (Grant No. G20220025).
Corresponding Authors:  Yong-Ming Luo     E-mail:  ymluo@hdu.edu.cn

Cite this article: 

Jian-Hui Chen(陈建辉), Meng-Fan Liang(梁梦凡), Yan Song(宋衍), Jun-Jie Yuan(袁俊杰), Meng-Yang Zhang(张梦旸), Yong-Ming Luo(骆泳铭), and Ning-Ning Wang(王宁宁) Wedge-shaped HfO2 buffer layer-induced field-free spin—orbit torque switching of HfO2/Pt/Co structure 2024 Chin. Phys. B 33 047503

[1] Shao Q M, Li P, Liu L Q, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, AAkerman J, Roy K, Wang J P, Yang S H, Garello K and Zhang W 2021 IEEE T. Magn. 57 1
[2] Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 35004
[3] Ramaswamy R, Lee J M, Cai K M and Yang H 2018 Appl. Phys. Rev. 5 31107
[4] Aradhya S V, Rowlands G E, Oh J, Ralph D C and Buhrman R A 2016 Nano Lett. 16 5987
[5] Garello K, Avci C O, Miron I M, Baumgartner M, Ghosh A, Auffret S, Boulle O, Gaudin G and Gambardella P 2014 Appl. Phys. Lett. 105 212402
[6] Fukami S, Anekawa T, Zhang C and Ohno H 2016 Nat. Nanotechnol. 11 621
[7] Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
[8] Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
[9] Baek S H C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Nat. Mater. 17 509
[10] Fukami S, Zhang C L, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535
[11] Kong W J, Wan C H, Wang X, Tao B S, Huang L, Fang C, Guo C Y, Guang Y, Irfan M and Han X F 2019 Nat. Commun. 10 233
[12] Lau Y C, Betto D, Rode K, Coey J M D and Stamenov P 2016 Nat. Nanotechnol. 11 758
[13] Zhao Z Y, Smith A K, Jamali M and Wang J P 2020 Adv. Electron. Mater. 6 1901368
[14] Hu S, Shao D F, Yang H L, Pan C, Fu Z X, Tang M, Yang Y M, Fan W J, Zhou S M, Tsymbal E Y and Qiu X P 2022 Nat. Commun. 13 4447
[15] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Nat. Phys. 13 300
[16] Safeer C K, Jué E, Lopez A, Buda-Prejbeanu L, Auffret S, Pizzini S, Boulle O, Miron I M and Gaudin G 2016 Nat. Nanotechnol. 11 143
[17] Wu H, Nance J, Razavi S A, Lujan D, Dai B Q, Liu Y X, He H R, Cui B S, Wu D, Wong K, Sobotkiewich K, Li X Q, Carman G P and Wang K L 2021 Nano Lett. 21 515
[18] Chen R Y, Cui Q R, Liao L Y, Zhu Y M, Zhang R Q, Bai H, Zhou Y J, Xing G Z, Pan F, Yang H X and Song C 2021 Nat. Commun. 12 3113
[19] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[20] Razavi A, Wu H, Shao Q M, Fang C, Dai B Q, Wong K, Han X F, Yu G Q and Wang K L 2020 Nano Lett. 20 3703
[21] Jin T L, Lim G J, Poh H Y, Wu S, Tan F N and Lew W S 2022 ACS Appl. Mater. Interfaces 14 9781
[22] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653
[23] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L and Yu G H 2019 Appl. Phys. Lett. 115 172403
[24] Wu H, Nance J, Razavi S A, Lujan D, Dai B Q, Liu Y X, He H R, Cui B S, Wu D, Wong K, Sobotkiewich K, Li X Q, Carman G P and Wang K L 2021 Nano Lett. 21 515
[25] Park M H, Kim H J, Kim Y J, Lee W, Moon T and Hwang C S 2013 Appl. Phys. Lett. 102 242905
[26] Hoffmann M, Schroeder U, Schenk T, Shimizu T, Funakubo H, Sakata O, Pohl D, Drescher M, Adelmann C, Materlik R, Kersch A and Mikolajick T 2015 J. Appl. Phys. 118 72006
[27] Quan Z Y, Wang M M, Zhang X, Liu H H, Zhang W and Xu X H 2020 AIP Adv. 10 85024
[28] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodríguez A, Scholl A, Wang S X and Ramesh R 2008 Nat. Mater. 7 478
[29] Yu G Q, Upadhyaya P, Fan Y B, Alzate J G, Jiang W J, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M R, Tang J S, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
[30] Wu H, Zhang J, Cui B, Razavi S A, Che X, Pan Q, Wu D, Yu G, Han X and Wang K L 2022 Materials Futures 1 22201
[31] Zhu L J, Ralph D C and Buhrman R A 2021 Phys. Rev. Appl. 15 24059
[1] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[2] Multiple modes of perpendicular magnetization switching scheme in single spin—orbit torque device
Tong-Xi Liu(刘桐汐), Zhao-Hao Wang(王昭昊), Min Wang(王旻), Chao Wang(王朝), Bi Wu(吴比), Wei-Qiang Liu(刘伟强), and Wei-Sheng Zhao(赵巍胜). Chin. Phys. B, 2022, 31(10): 107501.
No Suggested Reading articles found!