Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 098503    DOI: 10.1088/1674-1056/acaa28
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications

Xiaoyu Pan(潘霄宇)1,2, Hongxia Guo(郭红霞)2,†, Yahui Feng(冯亚辉)3, Yinong Liu(刘以农)1, Jinxin Zhang(张晋新)4, Jun Fu(付军)5, and Guofang Yu(喻国芳)5
1 The Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2 State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, China;
3 School of Material Science and Engineering, Xiangtan University, Xiangtan 411105, China;
4 School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China;
5 School of Integrated Circuits, Tsinghua University, Beijing 100084, China
Abstract  We experimentally demonstrate that the dominant mechanism of single-event transients in silicon-germanium heterojunction bipolar transistors (SiGe HBTs) can change with decreasing temperature from +20 ℃ to -180 ℃. This is accomplished by using a new well-designed cryogenic experimental system suitable for a pulsed-laser platform. Firstly, when the temperature drops from +20 ℃ to -140 ℃, the increased carrier mobility drives a slight increase in transient amplitude. However, as the temperature decreases further below -140 ℃, the carrier freeze-out brings about an inflection point, which means the transient amplitude will decrease at cryogenic temperatures. To better understand this result, we analytically calculate the ionization rates of various dopants at different temperatures based on Altermatt's new incomplete ionization model. The parasitic resistivities with temperature on the charge-collection pathway are extracted by a two-dimensional (2D) TCAD process simulation. In addition, we investigate the impact of temperature on the novel electron-injection process from emitter to base under different bias conditions. The increase of the emitter-base junction's barrier height at low temperatures could suppress this electron-injection phenomenon. We have also optimized the built-in voltage equations of a high current compact model (HICUM) by introducing the impact of incomplete ionization. The present results and methods could provide a new reference for effective evaluation of single-event effects in bipolar transistors and circuits at cryogenic temperatures, and could provide a new evidence of the potential of SiGe technology in applications in extreme cryogenic environments.
Keywords:  SiGe heterojunction bipolar transistors      pulsed laser      TCAD simulation      single-event transient  
Received:  21 September 2022      Revised:  30 November 2022      Accepted manuscript online:  09 December 2022
PACS:  85.30.Pq (Bipolar transistors)  
  61.80.Az (Theory and models of radiation effects)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61704127 and 11775167).
Corresponding Authors:  Hongxia Guo     E-mail:  guohxnint@126.com

Cite this article: 

Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳) Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications 2023 Chin. Phys. B 32 098503

[1] Cressler J D 2010 IEEE Transactions on Device and Materials Reliability 10 437
[2] Lourenco N E, Fleetwood Z E, Ildefonso A, Wachter M T, Roche N J H, Khachatrian A, McMorrow D, Buchner S P, Warner J H, Itsuji H, Kobayashi D, Hirose K, Paki P, Raman A and Cressler J D 2017 IEEE Trans. Nucl. Sci. 64 406
[3] Sutton A, Moen K, Cressler J D, Carts M, Marshall P, Pellish J, Ramachandran V, Reed R, Alles M and Niu G 2008 Solid-State Electronics 52 1652
[4] Laird J S, Hirao T, Onoda S, Mori H and Itoh H 2002 IEEE Trans. Nucl. Sci. 49 1389
[5] Laird J S, Onoda S and Hirao T 2008 J. Appl. Phys. 104 084510
[6] Ramachandran V, Gadlage M, Ahlbin J, Narasimham B, Alles M, Reed R, Bhuva B, Massengill L, Black J and Foster C 2010 Solid-State Electronics 54 1052
[7] Xu Z, Niu G, Luo L, Cressler J D, Alles M L, Reed R, Mantooth H A, Holmes J and Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3206
[8] Knudson A R, Campbell A B, Hauser J R, Jessee M, Stapor W J and Shapiro P 1986 IEEE Trans. Nucl. Sci. 33 1560
[9] Schröter M and Chakravorty A 2010 Compact Hierarchical Bipolar Transistor Modeling With HiCUM (Singapore: World Scientific) p. 752
[10] Laird J S, Hirao T, Mori H, Onoda S, Kamiya T and Itoh H 2001 NIMPB 181 87
[11] Melinger J S, Buchner S, McMorrow D, Stapor W J, Weatherford T R, Campbell A B and Eisen H 1994 IEEE Trans. Nucl. Sci. 41 2574
[12] Hales J M, Cressler J D, McMorrow D, Khachatrian A, Buchner S, Warner J, Ildefonso A, Tzintzarov G N, Nergui D, Monahan D M and Lalumondiere S D 2020 IEEE Trans. Nucl. Sci. 67 81
[13] Svantesson K G and Nilsson N G 1979 Journal of Physics C: Solid State Physics 12 3837
[14] Zacharias M and Kelires P C 2020 Phys. Rev. B 101 245122
[15] Laird J S, Chen Y, Scheick L, Vo T and Johnston A 2008 Rev. Sci. Instrum. 79 083705
[16] Pan X, Guo H, Feng Y, Liu Y, Zhang J, Li Z, Luo Y, Zhang F, Wang T, Zhao W, Ding L and Xu J 2022 Science China Technological Sciences 65 1193
[17] Palomo F R, Mogollon J M, Napoles J and Aguirre M A 2010 IEEE Trans. Nucl. Sci. 57 1884
[18] Pouget V, Lapuyade H, Fouillat P, Lewis D and Buchner S 2001 Microelectronics Reliability 41 1513
[19] Buchner S P, Miller F, Pouget V and McMorrow D P 2013 IEEE Trans. Nucl. Sci. 60 1852
[20] Hales J M, Khachatrian A, Buchner S, Roche N J H, Warner J, Fleetwood Z E, Ildefonso A, Cressler J D, Ferlet-Cavrois V and McMorrow D 2018 IEEE Trans. Nucl. Sci. 65 1724
[21] Pires R G, Dickstein R M, Titcomb S L and Anderson R L 1990 Cryogenics 30 1064
[22] Loveless T D, Reising D R, Cancelleri J C, Massengill L W and McMorrow D 2021 IEEE Trans. Nucl. Sci. 68 1600
[23] Klaassen D B M 1992 Solid State Electronics 35 961
[24] Jacoboni C, Canali C, Ottaviani G and Alberigi Quaranta A 1977 Solid-State Electronics 20 77
[25] Slotboom J W and de Graaff H C 1976 Solid State Electronics 19 857
[26] Herbert D C 1996 Fundamentals of Semiconductors: Physics and Materials Properties, Vol. 11 p. 018
[27] Dash W C and Newman R 1955 Phys. Rev. 99 1151
[28] Zhang J X, He C H, Guo H X, Li P, Guo B L and Wu X X 2017 Chin. Phys. B 26 088502
[29] Khachatrian A, Roche N J H, Dodds N A, McMorrow D, Warner J H, Buchner S P and Reed R A 2015 IEEE Trans. Nucl. Sci. 62 2452
[30] Altermatt P P, Schenk A and Heiser G 2006 J. Appl. Phys. 100 113714
[31] Altermatt P P, Schenk A, Schmithüsen B and Heiser G 2006 J. Appl. Phys. 100 113715
[32] Luo L, Niu G, Moen K A and Cressler J D 2009 IEEE Trans. Electron Devices 56 2169
[33] Mott N F 1968 Rev. Mod. Phys. 40 677
[34] Rosling M, Bleichner H, Jonsson P and Nordlander E 1994 J. Appl. Phys. 76 2855
[35] Dhariwal S R and Ojha V N 1982 Solid-State Electronics 25 909
[1] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[2] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[3] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[4] Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs
Rongxing Cao(曹荣幸), Kejia Wang(汪柯佳), Yang Meng(孟洋), Linhuan Li(李林欢), Lin Zhao(赵琳), Dan Han(韩丹), Yang Liu(刘洋), Shu Zheng(郑澍), Hongxia Li(李红霞), Yuqi Jiang(蒋煜琪), Xianghua Zeng(曾祥华), and Yuxiong Xue(薛玉雄). Chin. Phys. B, 2023, 32(6): 068502.
[5] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Terahertz shaping technology based on coherent beam combining
Xiao-Ran Zheng(郑晓冉), Dan-Ni Ma(马丹妮), Guang-Tong Jiang(蒋广通), Cun-Lin Zhang(张存林), and Liang-Liang Zhang(张亮亮). Chin. Phys. B, 2023, 32(11): 114210.
[8] High stability and low noise laser-diode end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti3C2Tx-PVA saturable absorber
Jia-Le Yan(闫佳乐), Ben Li(李奔), Guo-Zhen Wang(王国珍), Shun-Yu Yang(杨顺宇), Bao-Le Lu(陆宝乐), and Yang Bai(白杨). Chin. Phys. B, 2023, 32(11): 114212.
[9] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[10] Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances
Pietro Marabotti, Sonia Peggiani, Alessandro Vidale, and Carlo Spartaco Casari. Chin. Phys. B, 2022, 31(12): 125202.
[11] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[12] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[13] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
No Suggested Reading articles found!