Special Issue:
SPECIAL TOPIC — States and new effects in nonequilibrium
|
SPECIAL TOPIC—States and new effects in nonequilibrium |
Prev
Next
|
|
|
Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass |
Lin Ma(马琳)†, Xiao-Dong Yang(杨晓东)†, Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟)‡ |
Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The early stage evolution of local atomic structures in a multicomponent metallic glass during its crystallization process has been investigated via molecular dynamics simulation. It is found that the initial thermal stability and earliest stage evolution of the local atomic clusters show no strong correlation with their initial short-range orders, and this leads to an observation of a novel symmetry convergence phenomenon, which can be understood as an atomic structure manifestation of the ergodicity. Furthermore, in our system we have quantitatively proved that the crucial factor for the thermal stability against crystallization exhibited by the metallic glass is not the total amount of icosahedral clusters, but the degree of global connectivity among them.
|
Received: 27 November 2023
Revised: 22 January 2024
Accepted manuscript online: 01 February 2024
|
PACS:
|
64.70.pe
|
(Metallic glasses)
|
|
68.55.A-
|
(Nucleation and growth)
|
|
64.60.aq
|
(Networks)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 52031016 and 11804027). |
Corresponding Authors:
Zhen-Wei Wu
E-mail: zwwu@bnu.edu.cn
|
Cite this article:
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟) Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass 2024 Chin. Phys. B 33 036402
|
[1] Wang W H 2019 Prog. Mater. Sci. 106 100561 [2] Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature 439 419 [3] Cheng Y Q, Ma E and Sheng H W 2009 Phys. Rev. Lett. 102 245501 [4] Pauly S, Gorantla S, Wang G, Kühn U and Eckert J 2010 Nat. Mater. 9 473 [5] Inoue A 2000 Acta Mater. 48 279 [6] Wang Q, Liu C T, Yang Y, Dong Y D and Lu J 2011 Phys. Rev. Lett. 106 215505 [7] Liu X, Chen G, Hou H, Hui X, Yao K, Lu Z and Liu C 2008 Acta Mater. 56 2760 [8] Wang X L, Almer J, Liu C T, Wang Y D, Zhao J K, Stoica A D, Haeffner D R and Wang W H 2003 Phys. Rev. Lett. 91 265501 [9] Luo W K, Sheng H W, Alamgir F M, Bai J M, He J H and Ma E 2004 Phys. Rev. Lett. 92 145502 [10] Chen G L, Liu X J, Hui X D, Hou H Y, Yao K F, Liu C T and Wadsworth J 2006 Appl. Phys. Lett. 88 203115 [11] Martin I, Ohkubo T, Ohnuma M, Deconihout B and Hono K 2004 Acta Mater. 52 4427 [12] Della Valle R G, Gazzillo D, Frattini R and Pastore G 1994 Phys. Rev. B 49 12625 [13] Kelton K F, Lee G W, Gangopadhyay A K, Hyers R W, Rathz T J, Rogers J R, Robinson M B and Robinson D S 2003 Phys. Rev. Lett. 90 195504 [14] Cheng Y and Ma E 2011 Prog. Mater. Sci. 56 379 [15] Li M, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201 [16] Wu Z W, Li M Z, Wang W H, Song W J and Liu K X 2013 J. Chem. Phys. 138 074502 [17] Jiang S Q, Wu Z W and Li M Z 2016 J. Chem. Phys. 144 154502 [18] Mokshin A V and Barrat J L 2008 Phys. Rev. E 77 021505 [19] Mokshin A V and Barrat J L 2010 Phys. Rev. E 82 021505 [20] Wu Y, Xu B, Sun Y and Guan P 2021 Chin. Phys. B 30 57103 [21] Cui S, Liu H and Peng H 2022 Chin. Phys. B 31 86108 [22] Liu K X, Liu W D, Wang J T, Yan H H, Li X J, Huang Y J, Wei X S and Shen J 2008 Appl. Phys. Lett. 93 081918 [23] Gao J A, Huang H S and Lv Y J 2021 Chin. Phys. B 30 66301 [24] Ye L M, Wu Z W, Liu K X, Tang X Z and Xiong X M 2016 Chin. Phys. B 25 068104 [25] Chen S Y, Wu Z W and Liu K X 2014 Chin. Phys. B 23 066802 [26] Cheng Y Q and Ma E 2008 Appl. Phys. Lett. 93 051910 [27] Wu Z W, Li M Z, Wang W H and Liu K X 2013 Phys. Rev. B 88 054202 [28] Li M Z, Peng H L, Hu Y C, Li F X, Zhang H P and Wang W H 2017 Chin. Phys. B 26 016104 [29] Qiao Q, Wang J, Cai Z, Feng S, Song Z, Huo B, Li Z and Wang L M 2023 Chin. Phys. B 32 116401 [30] Peng H L, Li M Z and Wang W H 2011 Phys. Rev. Lett. 106 135503 [31] Plimpton S 1995 J. Comput. Phys. 117 1 [32] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113 [33] Yang L, Xia J H, Wang Q, Dong C, Chen L Y, Ou X, Liu J F, Jiang J Z, Klementiev K, Saksl K, Franz H, Schneider J R and Gerward L 2006 Appl. Phys. Lett. 88 241913 [34] Mendelev M I, Sordelet D J and Kramer M J 2007 J. Appl. Phys. 102 043501 [35] Finney J L and Bernal J D 1970 Proc. R. Soc. A: Math. Phys. Eng. Sci. 319 479 [36] Borodin V A 1999 Phil. Mag. A 79 1887 [37] Schroers J, Busch R, Masuhr A and Johnson W L 1999 Appl. Phys. Lett. 74 2806 [38] Schroers J, Johnson W L and Busch R 2000 Appl. Phys. Lett. 77 1158 [39] Pauly S, Liu G, Gorantla S, Wang G, Kühn U, Kim D and Eckert J 2010 Acta Mater. 58 4883 [40] Wu Z, Li F, Huo C, Li M, Wang W and Liu K 2016 Sci. Rep. 6 35967 [41] Sun G, Giovambattista N, Wang E and Xu L 2013 Soft Matter 9 11374 [42] Desgranges C and Delhommelle J 2018 Phys. Rev. Lett. 120 115701 [43] Desgranges C and Delhommelle J 2019 Phys. Rev. Lett. 123 195701 [44] Li F X and Li M Z 2017 J. Appl. Phys. 122 225103 [45] Wu Z W, Kob W, Wang W H and Xu L 2018 Nat. Commun. 9 5334 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|