Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016101    DOI: 10.1088/1674-1056/acf994
Special Issue: SPECIAL TOPIC — States and new effects in nonequilibrium
SPECIAL TOPIC—States and new effects in nonequilibrium Prev   Next  

Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids

H P Zhang(张华平)1,2, B B Fan(范蓓蓓)1, J Q Wu(吴佳琦)1, and M Z Li(李茂枝)1,3,†
1 Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other parameters, such as pressure, loading and size, can also tune the liquid dynamics and induce glass transition, which makes the situation more complicated. Here, we performed molecular dynamics simulations for Ni50Zr50 bulk liquid and nanodroplet to study the dynamics evolution in the complex multivariate phase space, especially along the isotherm with the change of pressure or droplet size. It is found that the short-time Debye—Waller factor universally determines the long-time relaxation dynamics no matter how the temperature, pressure or size changes. The basic correlation even holds at the local atomic scale. This finding provides general understanding of the microscopic mechanism of dynamic arrest and dynamic heterogeneity.
Keywords:  metallic glass-forming liquids      structure relaxation      dynamical heterogeneity      Debye—Waller factor  
Received:  01 July 2023      Revised:  03 September 2023      Accepted manuscript online:  14 September 2023
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.20.Lc (Time-dependent properties; relaxation)  
  64.70.Q- (Theory and modeling of the glass transition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52031016). Computational resources have been provided by the Physical Laboratory of High Performance Computing at Renmin University of China.
Corresponding Authors:  M Z Li     E-mail:  maozhili@ruc.edu.cn

Cite this article: 

H P Zhang(张华平), B B Fan(范蓓蓓), J Q Wu(吴佳琦), and M Z Li(李茂枝) Universal basis underlying temperature, pressure and size induced dynamical evolution in metallic glass-forming liquids 2024 Chin. Phys. B 33 016101

[1] Angell C A 1995 Science 267 1924
[2] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[3] Turnbull D and Cohen M H 1961 J. Chem. Phys. 34 120
[4] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[5] Dyre J C 2006 Rev. Mod. Phys. 78 953
[6] Tanaka H, Kawasaki T, Shintani H and Watanabe K 2010 Nat. Mater. 9 324
[7] Egami T 2011 Prog. Mater. Sci. 56 637
[8] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[9] Hu Y C, Li F X, Li M Z, Bai H Y and Wang W H 2015 Nat. Commun. 6 8310
[10] Liu X J, Wang S D, Wang H, Wu Y, Liu C T, Li M and Lu Z P 2018 Phys. Rev. B 97 134107
[11] Reiser A, Kasper G and Hunklinger S 2005 Phys. Rev. B 72 094204
[12] Sastry S 2001 Nature 409 164
[13] Shintani H and Tanaka H 2008 Nat. Mater. 7 870
[14] Yu H B, Richert R, Maaş R and Samwer K 2015 Nat. Commun. 6 7179
[15] Xu N, Haxton T K, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 103 245701
[16] Wang L, Xu N, Wang W H and Guan P 2018 Phys. Rev. Lett. 120 125502
[17] Roland R M, Hensel-Bielowka S, Paluch M and Casalini R 2005 Rep. Prog. Phys. 68 1405
[18] Gnan N, Schröder T B, Pedersen U R, Bailey N P and Dyre J C 2009 J. Chem. Phys. 131 234504
[19] Gundermann D, Pedersen U R, Hecksher T, Bailey N P, Jakobsen B, Christensen T, Olsen N B, Schroder T B, Fragiadakis D, Casalini R, Roland C M, Dyre J C and Niss K 2011 Nat. Phys. 7 816
[20] Hu Y C, Shang B S, Guan P F, Yang Y, Bai H Y and Wang W H 2016 J. Chem. Phys. 145 104503
[21] Wojnarowska Z, Musia M, Dzida M and Paluch M 2019 Phys. Rev. Lett. 123 125702
[22] Sanz A, Hecksher T, Hansen H W, Dyre J C, Niss K and Pedersen U R 2019 Phys. Rev. Lett. 122 055501
[23] Johnson W L and Samwer K 2005 Phys. Rev. Lett. 95 195501
[24] Guan P, Chen M and Egami T 2010 Phys. Rev. Lett. 104 205701
[25] Ingebrigtsena T S H and Tanaka H 2018 Proc. Natl. Acad. Sci. USA 115 87
[26] Varnik F, Baschnagel J and Binder K 2002 Phys. Rev. E 65 021507
[27] Li Y Z, Sun Y T, Lu Z, Li M Z, Bai H Y and Wang W H 2017 J. Chem. Phys. 146 224502
[28] Zhang S, Wang W H and Guan P F 2021 Chin. Phys. Lett. 38 016802
[29] Luo J, Wang J, Bitzek E, Huang J H, Zheng H, Tong L, Yang Q, Li J and Mao S X 2015 Nano Lett. 16 105
[30] Sun J, He L, Lo Y C, Xu T, Bi H, Sun L, Zhang Z, Mao S X and Li J 2014 Nat. Mater. 13 1007
[31] Liu A J and Nagel S R 1998 Nature 396 21
[32] Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J, Nagel S R and Yodh A G 2009 Nature 459 230
[33] Plimpton S 1995 J. Comput. Phys. 117 1
[34] Mendelev M I, Kramer M J, Hao S G, Ho K M and Wang C Z 2012 Philos. Mag. 92 4454
[35] Iwashita T, Nicholson D M and Egami T 2013 Phys. Rev. Lett. 110 205504
[36] Hall R W and Wolynes P G 1987 J. Chem. Phys. 86 2943
[37] Larini L, Ottochian A, Michele C D and Leporini D 2008 Nat. Phys. 4 42
[38] Michele C D, Gado E D and Leporini D 2011 Soft Mater 7 4025
[39] Puosi F and Leporini D 2011 J. Phys. Chem. B 115 14046
[40] Puosi F, Michele C D and Leporini D 2013 J. Chem. Phys. 138 12
[41] Starr F W, Sastry S, Douglas J F and Glotzer S C 2002 Phys. Rev. Lett. 89 125501
[42] Simmons D S, Cicerone M T, Zhong Q, Tyagi M and Douglas J F 2012 Soft Matter. 8 11455
[43] Simmons D S, Cicerone M T and Douglas J F 2013 Soft Matter. 9 7892
[44] Betancourt B A P, Hanakata P Z, Starr F W and Douglas J F 2015 Proc. Natl. Acad. Sci. 112 2966
[45] Weeks E R, Crocker J C, Levitt A C, Schofield A and Weitz D A 2000 Science 287 627
[46] Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, Masri D E, L'HÔte D, Ladieu F and Pierno M 2005 Science 310 1797
[47] Kawasaki T, Araki T and Tanaka H 2007 Phys. Rev. Lett. 99 215701
[48] Karmakara S, Dasguptaa C and Sastry S 2009 Proc. Natl. Acad. Sci. USA 106 3675
[49] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701
[50] Widmer-Cooper A and Harrowell P 2006 Phys. Rev. Lett. 96 185701
[51] Mattsson J, Wyss H M, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman D R and Weitz D A 2009 Nature 462 83
[52] Kraussera J, Konrad H, Samwerc K H and Zaccone A 2015 Proc. Natl. Acad. Sci. USA 112 13762
[53] Pueblo C E, Sun M and Kelton K F 2017 Nat. Mater. 16 792
[54] Ding J, Cheng Y Q, Sheng H, Asta M, Ritchie R O and Ma E 2016 Nat. Commun. 7 13733
[55] Fan H, Fan Z, Liu X, Lu Z and Ma E 2021 Mater. Horiz. 8 2359
[56] Stillinger F H 1995 Science 267 1935
[57] Fan Y, Iwashita T and Egami T 2014 Nat. Commun. 5 5083
[58] Xu H Y, Sheng H W and Li M Z 2018 J. Appl. Phys. 123 125108
[59] Zhang H P, Fan B B, Wu J Q, Wang W H and Li M Z 2020 Phys. Rev. Mater. 4 095603
[60] Wu J Q, Zhang H P and Li M Z 2022 Comp. Mater. Sci. 203 111135
[1] Nonperturbative effects of attraction on dynamical behaviors of glass-forming liquids
Xiaoyan Sun(孙晓燕), Haibo Zhang(张海波), Lijin Wang(王利近), Zexin Zhang(张泽新), and Yuqiang Ma(马余强)\ccclink. Chin. Phys. B, 2020, 29(12): 126201.
No Suggested Reading articles found!