Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 018501    DOI: 10.1088/1674-1056/acfa84
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect

Shuping Li(李淑萍)1,†, Ting Lei(雷挺)2,3,†, Zhongxing Yan(严仲兴)1, Yan Wang(王燕)1, Like Zhang(张黎可)4, Huayao Tu(涂华垚)2,3, Wenhua Shi(时文华)2,3,‡, and Zhongming Zeng(曾中明)2,3,§
1 Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215123, China;
2 Nanofabrication Facility, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
3 School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;
4 School of Electronics and Information Engineering, Wuxi University, Wuxi 214105, China
Abstract  Graphene, with its zero-bandgap electronic structure, is a highly promising ultra-broadband light absorbing material. However, the performance of graphene-based photodetectors is limited by weak absorption efficiency and rapid recombination of photoexcited carriers, leading to poor photodetection performance. Here, inspired by the photogating effect, we demonstrated a highly sensitive photodetector based on graphene/WSe2 vertical heterostructure where the WSe2 layer acts as both the light absorption layer and the localized grating layer. The graphene conductive channel is induced to produce more carriers by capacitive coupling. Due to the strong light absorption and high external quantum efficiency of multilayer WSe2, as well as the high carrier mobility of graphene, a high photocurrent is generated in the vertical heterostructure. As a result, the photodetector exhibits ultra-high responsivity of 3.85×104 A/W and external quantum efficiency of 1.3×107%. This finding demonstrates that photogating structures can effectively enhance the sensitivity of graphene-based photodetectors and may have great potential applications in future optoelectronic devices.
Keywords:  WSe2      heterostructure      photodetector      photogating effect  
Received:  26 June 2023      Revised:  15 August 2023      Accepted manuscript online:  18 September 2023
PACS:  85.60.-q (Optoelectronic devices)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974379), the National Key Basic Research and Development Program of China (Grant No. 2021YFC2203400), and Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio (Grant No. 2022-13).
Corresponding Authors:  Wenhua Shi, Zhongming Zeng     E-mail:  whshi2007@sinano.ac.cn;zmzeng2012@sinano.ac.cn

Cite this article: 

Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明) High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect 2024 Chin. Phys. B 33 018501

[1] Lin P, Zhu L, Li D, Xu L, Pan C and Wang Z 2018 Adv. Funct. Mater. 28 1802849
[2] He H K, Yang F F and Yang R 2020 Phys. Chem. Chem. Phys. 22 20658
[3] Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H and Xu X 2014 Nat. Nanotechnol. 9 268
[4] Cheng Q, Pang J, Sun D, Wang J, Zhang S, Liu F, Chen Y, Yang R, Liang N, Lu X, Ji Y, Wang J, Zhang C, Sang Y, Liu H and Zhou W 2020 InfoMat 2 656
[5] Zhang J, Du L, Feng S, Zhang R W, Cao B, Zou C, Chen Y, Liao M, Zhang B and Yang S A 2019 Nat. Commun. 10 4226
[6] Luo X, Andrews K, Wang T, Bowman A, Zhou Z and Xu Y Q 2019 Nanoscale 11 7358
[7] Yin Z, Hai Li, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X and Zhang A H 2012 ACS Nano 6 74
[8] Chu C H, Lin H C, Yeh C H, Liang Z Y, Chou M Y and Chiu P W 2019 ACS Nano 13 8146
[9] Murali K, Abraham N, Das S, Kallatt S and Majumdar K 2019 ACS Appl. Mater. & Inter. 11 30010
[10] Kang B, Kim Y, Yoo W J and Lee C 2018 Small 14 e1802593
[11] Kim H J, Lee K J, Park J, Shin G H, Park H, Yu K and Choi S Y 2020 ACS Appl. Mater. & Inter. 12 38563
[12] Geim A K and Grigorieva I V 2013 Nature 499 419
[13] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 1
[14] Omar S, Madhushankar B N and van Wees B J 2019 Phys. Rev. B 100 155415
[15] Zhang Z, Lin P, Liao Q, Kang Z, Si H and Zhang Y 2019 Adv. Mater. 31 e1806411
[16] Zhou Y, Tan H, Sheng Y, Fan Y, Xu W and Warner J H 2018 ACS Nano 12 4669
[17] Yeh C H, Liang Z Y, Lin Y C, Wu T L, Fan T, Chu Y C, Ma C H, Liu Y C, Chu Y H, Suenaga K and Chiu P W 2017 ACS Appl. Mater. & Inter. 9 36181
[18] Xing X, Zhao L, Zhang W, Wang Z, Su H, Chen H, Ma G, Dai J and Zhang W 2020 Nanoscale 12 2498
[19] Tan C, Wang H, Zhu X, Gao W, Li H, Chen J, Li G, Chen L, Xu J, Hu X, Li L and Zhai T 2020 ACS Appl. Mater. & Inter. 12 44934
[20] Tan C, Yin S, Chen J, Lu Y, Wei W, Du H, Liu K, Wang F, Zhai T and Li L 2021 ACS Nano 15 8328
[21] Chen J, Bailey C S, Hong Y, Wang L, Cai Z, Shen L, Hou B, Wang Y, Shi H, Sambur J, Ren W, Pop E and Cronin S B 2019 ACS Photon. 6 787
[22] Jiang H, Wei J, Sun F, Nie C, Fu J, Shi H, Sun J, Wei X and Qiu C W 2022 ACS Nano 16 4458
[23] Zhao Y, Tsai T Y, Wu G, Ó Coileáin C, Zhao Y F, Zhang D, Hung K M, Chang C R, Wu Y R and Wu H C 2021 ACS Appl. Mater. & Inter. 13 47198
[24] Wei K, Sui Y, Xu Z, Kang Y, You J, Tang Y, Li H, Ma Y, Ouyang H, Zheng X, Cheng X and Jiang T 2020 Nat. Commun. 11 3876
[25] Wang Y, Ho V X, Pradhan P, Cooney M P and Vinh N Q 2021 ACS Appl. Nano Mater. 4 8539
[26] Shin J and Yoo H 2023 Nanomaterials 13 882
[27] Fang Y, Armin A, Meredith P and Huang J 2019 Nat. Photon. 13 1
[28] Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W, Zhou P and Hu W 2021 Nat. Electron. 4 357
[29] Rogalski A 2022 Nat. Nanotechnol. 17 217
[30] Wang F, Liu Z, Zhang T, Long M, Wang X, Xie R, Ge H, Wang H, Hou J and Gu Y 2022 Adv. Mater. 34 2203283
[31] Wang F, Zhang T, Xie R, Wang Z and Hu W 2023 Nat. Commun. 14 2224
[1] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shijun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[2] BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2024, 33(4): 047701.
[3] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene-silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[4] Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(2): 027201.
[5] Electronic property and topological phase transition in a graphene/CoBr2 heterostructure
Yuan-Xiu Qin(秦元秀), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(2): 027901.
[6] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[7] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[8] InSe-Te van der Waals heterostructures for current rectification and photodetection
Hao Wang(王昊), Guo-Yu Xian(冼国裕), Li Liu(刘丽), Xuan-Ye Liu(刘轩冶), Hui Guo(郭辉), Li-Hong Bao(鲍丽宏), Hai-Tao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(8): 087303.
[9] Anomalous photoluminescence enhancement and resonance charge transfer in type-II 2D lateral heterostructures
Chun-Yan Zhao(赵春艳), Sha-Sha Li(李莎莎), and Yong Yan(闫勇). Chin. Phys. B, 2023, 32(8): 087801.
[10] Electronic structure of cuprate-nickelate infinite-layer heterostructure
Dachuan Chen(陈大川), Paul Worm, Liang Si(司良), Chunxiao Zhang(张春小), Fenglin Deng(邓凤麟), Peiheng Jiang(蒋沛恒), and Zhicheng Zhong(钟志诚). Chin. Phys. B, 2023, 32(8): 087105.
[11] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[12] Tunable correlation in twisted monolayer-trilayer graphene
Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(6): 067204.
[13] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[14] Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance
Liyong Du(杜丽勇) and Heming Sun(孙鹤鸣). Chin. Phys. B, 2023, 32(5): 050701.
[15] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
No Suggested Reading articles found!