Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 027201    DOI: 10.1088/1674-1056/ace3aa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures

Mingming Li(李明明)1, Lei Zhang(张磊)2, Lichuan Jin(金立川)2, and Haizhong Guo(郭海中)1,3,†
1 Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
3 Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
Abstract  For the past few years, germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology. The main challenges in the development of modern semiconductor spintronics are the generation, detection, and manipulation of spin currents. Here, the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y3Fe5O12/GeBi/Pt heterostructures were investigated systematically. The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted. The spin-injection efficiency in the Y3Fe5O12/GeBi/Pt heterostructures is comparable to that of the Y3Fe5O12/Pt bilayer, and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness. Furthermore, the band gap of the GeBi layer was tuned by changing the Bi content. The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer. Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
Keywords:  spin current      Y3Fe5O12/GeBi/Pt heterostructures      spin pumping      inverse spin Hall effect  
Received:  07 May 2023      Revised:  30 June 2023      Accepted manuscript online:  03 July 2023
PACS:  72.25.Mk (Spin transport through interfaces)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  67.30.hj (Spin dynamics)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0718701), the China Postdoctoral Science Foundation (Grant No. 2022M722888), and the National Natural Science Foundation of China (Grant Nos. 12174347 and 12004340).
Corresponding Authors:  Haizhong Guo     E-mail:  hguo@zzu.edu.cn

Cite this article: 

Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中) Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures 2024 Chin. Phys. B 33 027201

[1] Jain A, Rojas-Sanchez J C, Cubukcu M, et al. 2012 Phys. Rev. Lett. 109 106603
[2] Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M and Shiraishi M 2015 Phys. Rev. Lett. 114 196602
[3] Appelbaum I, Huang B and Monsma D 2007 Nature 447 295
[4] Cerqueira C, Qin J Y, Dang H, et al. 2019 Nano Lett. 19 90
[5] Pu Y, Odenthal P M, Adur R, Beardsley J, Swartz A G, Pelekhov D V, Flatté M E, Kawakami R K, Pelz J, Hammel P C and Johnston-Halperin E 2015 Phys. Rev. Lett. 115 246602
[6] Xie H F, Chang Y H, Guo X, Zhang J R, Cui B S, Zuo Y L and Xi L 2023 Chin. Phys. B 32 037502
[7] Lou P C, Katailiha A, Bhardwaj R G, Bhowmick T, Beyermann W P, Lake R K and Kumar S 2020 Phys. Rev. B 101 094435
[8] Ando K and Saitoh E 2012 Nat. Commun. 3 629
[9] Ezhevskii A A, Guseinov D V, Soukhorukov A V, Novikov A V, Yurasov D V and Gusev N S 2020 Phys. Rev. B 101 195202
[10] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[11] Niimi Y, Morota M, Wei D H, Deranlot C, Basletic M, Hamzic A, Fert A and Otani Y 2011 Phys. Rev. Lett. 106 126601
[12] Huang Z C, Liu W Q, Liang J, Guo Q J, Zhai Y and Xu Y B 2022 Chin. Phys. B 31 068505
[13] Yuan S P, Shen C, Zheng H Z, Liu Q, Wang L G, Meng K K and Zhao J H 2013 Chin. Phys. B 22 047202
[14] Niimi Y, Kawanishi Y, Wei D H, Deranlot C, Yang H X, Chshiev M, Valet T, Fert A and Otani Y 2012 Phys. Rev. Lett. 109 156602
[15] Yan W, Sagasta E, Ribeiro M, Niimi Y, Hueso L E and Casanova F 2017 Nat. Commun. 8 661
[16] Wang Y, Decker M M, Meier T N G, Chen X, Song C, Grünbaum T, Zhao W, Zhang J, Chen L and Back C H 2020 Nat. Commun. 11 275
[17] Safi T S, Zhang P, Fan Y, Guo Z, Han J, Rosenberg E R, Ross C, Tserkovnyak Y and Liu L 2020 Nat. Commun. 11 476
[18] Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S D and Hoffmann A 2010 Phys. Rev. Lett. 104 046601
[19] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403
[20] Rojas-Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L and Jaffrés H 2014 Phys. Rev. Lett. 112 106602
[21] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
[22] Kajiwara Y, Harii K, Takahashi S, et al. 2010 Nature 464 262
[23] Montoya E, Omelchenko P, Coutts C, Lee-Hone N R, Hübner R, Broun D, Heinrich B and Girt E 2016 Phys. Rev. B 94 054416
[24] Kalappattil V, Geng R, Das R, et al. 2020 Mater. Horiz. 7 1413
[25] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Appl. Phys. Lett. 104 202405
[26] Wang L, Jing Z X, Zhou A R and Li S D 2022 Chin. Phys. B 31 086201
[27] Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M and Hillebrands B 2015 Phys. Rev. B 91 134407
[28] Omelchenko P, Girt E and Heinrich B 2019 Phys. Rev. B 100 144418
[29] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201
[30] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
[31] Du C H, Wang H L, Yang F Y and Hammel P C 2014 Phys. Rev. B 90 140407
[32] Li M M, Jin L C, Zhong Z Y, Tang X L, Yang Q H, Zhang L and Zhang H W 2020 Phys. Rev. B 102 174435
[33] Du C H, Wang H L, Pu Y, Meyer T L, Woodward P M, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 111 247202
[34] Gassenq A, Milord L, Aubin J, Guilloy K, Tardif S, Pauc N, Rothman J, Chelnokov A, Hartmann J M, Reboud V and Calvo V 2016 Appl. Phys. Lett. 109 242107
[35] Wirths S, Geiger R, Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88
[1] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[2] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[3] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[4] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[5] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[6] Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(11): 117305.
[7] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[8] Magnetization-direction-dependent inverse spin Hall effect observed in IrMn/NiFe/Cu/YIG multilayer structure
Runrun Hao(郝润润), Ruxue Zang(臧如雪), Tie Zhou(周铁), Shishou Kang(康仕寿), Shishen Yan(颜世申), Guolei Liu(刘国磊), Guangbing Han(韩广兵), Shuyun Yu(于淑云), Liangmo Mei(梅良模). Chin. Phys. B, 2019, 28(3): 037202.
[9] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[10] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
[11] Spin-current pump in silicene
John Tombe Jada Marcellino, Mei-Juan Wang(王美娟), Sa-Ke Wang(汪萨克), Jun Wang(汪军). Chin. Phys. B, 2018, 27(5): 057801.
[12] Spin-independent transparency of pure spin current at normal/ferromagnetic metal interface
Runrun Hao(郝润润), Hai Zhong(钟海), Yun Kang(康韵), Yufei Tian(田雨霏), Shishen Yan(颜世申), Guolei Liu(刘国磊), Guangbing Han(韩广兵), Shuyun Yu(于淑云), Liangmo Mei(梅良模), Shishou Kang(康仕寿). Chin. Phys. B, 2018, 27(3): 037202.
[13] Spin-dependent balance equations in spintronics
Zheng-Chuan Wang(王正川). Chin. Phys. B, 2018, 27(1): 016701.
[14] The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模). Chin. Phys. B, 2017, 26(4): 047202.
[15] Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin-orbital interaction
Wei-Ping Xu(徐卫平), Yu-Ying Zhang(张玉颖), Qiang Wang(王强), Yi-Hang Nie(聂一行). Chin. Phys. B, 2016, 25(11): 117307.
No Suggested Reading articles found!