CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures |
Mingming Li(李明明)1, Lei Zhang(张磊)2, Lichuan Jin(金立川)2, and Haizhong Guo(郭海中)1,3,† |
1 Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 2 State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 3 Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China |
|
|
Abstract For the past few years, germanium-based semiconductor spintronics has attracted considerable interest due to its potential for integration into mainstream semiconductor technology. The main challenges in the development of modern semiconductor spintronics are the generation, detection, and manipulation of spin currents. Here, the transport characteristics of a spin current generated by spin pumping through a GeBi semiconductor barrier in Y3Fe5O12/GeBi/Pt heterostructures were investigated systematically. The effective spin-mixing conductance and inverse spin Hall voltage to quantitatively describe the spin transport characteristics were extracted. The spin-injection efficiency in the Y3Fe5O12/GeBi/Pt heterostructures is comparable to that of the Y3Fe5O12/Pt bilayer, and the inverse spin Hall voltage exponential decays with the increase in the barrier thickness. Furthermore, the band gap of the GeBi layer was tuned by changing the Bi content. The spin-injection efficiency at the YIG/semiconductor interface and the spin transportation within the semiconductor barrier are related to the band gap of the GeBi layer. Our results may be used as guidelines for the fabrication of efficient spin transmission structures and may lead to further studies on the impacts of different kinds of barrier materials.
|
Received: 07 May 2023
Revised: 30 June 2023
Accepted manuscript online: 03 July 2023
|
PACS:
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
67.30.hj
|
(Spin dynamics)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA0718701), the China Postdoctoral Science Foundation (Grant No. 2022M722888), and the National Natural Science Foundation of China (Grant Nos. 12174347 and 12004340). |
Corresponding Authors:
Haizhong Guo
E-mail: hguo@zzu.edu.cn
|
Cite this article:
Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中) Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures 2024 Chin. Phys. B 33 027201
|
[1] Jain A, Rojas-Sanchez J C, Cubukcu M, et al. 2012 Phys. Rev. Lett. 109 106603 [2] Dushenko S, Koike M, Ando Y, Shinjo T, Myronov M and Shiraishi M 2015 Phys. Rev. Lett. 114 196602 [3] Appelbaum I, Huang B and Monsma D 2007 Nature 447 295 [4] Cerqueira C, Qin J Y, Dang H, et al. 2019 Nano Lett. 19 90 [5] Pu Y, Odenthal P M, Adur R, Beardsley J, Swartz A G, Pelekhov D V, Flatté M E, Kawakami R K, Pelz J, Hammel P C and Johnston-Halperin E 2015 Phys. Rev. Lett. 115 246602 [6] Xie H F, Chang Y H, Guo X, Zhang J R, Cui B S, Zuo Y L and Xi L 2023 Chin. Phys. B 32 037502 [7] Lou P C, Katailiha A, Bhardwaj R G, Bhowmick T, Beyermann W P, Lake R K and Kumar S 2020 Phys. Rev. B 101 094435 [8] Ando K and Saitoh E 2012 Nat. Commun. 3 629 [9] Ezhevskii A A, Guseinov D V, Soukhorukov A V, Novikov A V, Yurasov D V and Gusev N S 2020 Phys. Rev. B 101 195202 [10] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910 [11] Niimi Y, Morota M, Wei D H, Deranlot C, Basletic M, Hamzic A, Fert A and Otani Y 2011 Phys. Rev. Lett. 106 126601 [12] Huang Z C, Liu W Q, Liang J, Guo Q J, Zhai Y and Xu Y B 2022 Chin. Phys. B 31 068505 [13] Yuan S P, Shen C, Zheng H Z, Liu Q, Wang L G, Meng K K and Zhao J H 2013 Chin. Phys. B 22 047202 [14] Niimi Y, Kawanishi Y, Wei D H, Deranlot C, Yang H X, Chshiev M, Valet T, Fert A and Otani Y 2012 Phys. Rev. Lett. 109 156602 [15] Yan W, Sagasta E, Ribeiro M, Niimi Y, Hueso L E and Casanova F 2017 Nat. Commun. 8 661 [16] Wang Y, Decker M M, Meier T N G, Chen X, Song C, Grünbaum T, Zhao W, Zhang J, Chen L and Back C H 2020 Nat. Commun. 11 275 [17] Safi T S, Zhang P, Fan Y, Guo Z, Han J, Rosenberg E R, Ross C, Tserkovnyak Y and Liu L 2020 Nat. Commun. 11 476 [18] Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S D and Hoffmann A 2010 Phys. Rev. Lett. 104 046601 [19] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403 [20] Rojas-Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L and Jaffrés H 2014 Phys. Rev. Lett. 112 106602 [21] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601 [22] Kajiwara Y, Harii K, Takahashi S, et al. 2010 Nature 464 262 [23] Montoya E, Omelchenko P, Coutts C, Lee-Hone N R, Hübner R, Broun D, Heinrich B and Girt E 2016 Phys. Rev. B 94 054416 [24] Kalappattil V, Geng R, Das R, et al. 2020 Mater. Horiz. 7 1413 [25] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Appl. Phys. Lett. 104 202405 [26] Wang L, Jing Z X, Zhou A R and Li S D 2022 Chin. Phys. B 31 086201 [27] Jungfleisch M B, Chumak A V, Kehlberger A, Lauer V, Kim D H, Onbasli M C, Ross C A, Kläui M and Hillebrands B 2015 Phys. Rev. B 91 134407 [28] Omelchenko P, Girt E and Heinrich B 2019 Phys. Rev. B 100 144418 [29] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201 [30] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601 [31] Du C H, Wang H L, Yang F Y and Hammel P C 2014 Phys. Rev. B 90 140407 [32] Li M M, Jin L C, Zhong Z Y, Tang X L, Yang Q H, Zhang L and Zhang H W 2020 Phys. Rev. B 102 174435 [33] Du C H, Wang H L, Pu Y, Meyer T L, Woodward P M, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 111 247202 [34] Gassenq A, Milord L, Aubin J, Guilloy K, Tardif S, Pauc N, Rothman J, Chelnokov A, Hartmann J M, Reboud V and Calvo V 2016 Appl. Phys. Lett. 109 242107 [35] Wirths S, Geiger R, Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D and Grützmacher D 2015 Nat. Photon. 9 88 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|